File size: 2,611 Bytes
a1ef4fc f21cf38 a1ef4fc f21cf38 a1ef4fc f21cf38 a1ef4fc f21cf38 a1ef4fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: HuggingFaceTB/SmolLM-1.7B-Instruct
datasets:
- generator
model-index:
- name: SmolLM_1_7B_Instruct_qlora_nf4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SmolLM_1_7B_Instruct_qlora_nf4
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6111
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.0769 | 0.9524 | 10 | 1.9176 |
| 1.8602 | 2.0 | 21 | 1.7910 |
| 1.7729 | 2.9524 | 31 | 1.7320 |
| 1.7147 | 4.0 | 42 | 1.6913 |
| 1.6753 | 4.9524 | 52 | 1.6662 |
| 1.6518 | 6.0 | 63 | 1.6477 |
| 1.6228 | 6.9524 | 73 | 1.6361 |
| 1.6118 | 8.0 | 84 | 1.6274 |
| 1.5843 | 8.9524 | 94 | 1.6214 |
| 1.5805 | 10.0 | 105 | 1.6173 |
| 1.5712 | 10.9524 | 115 | 1.6151 |
| 1.5524 | 12.0 | 126 | 1.6133 |
| 1.5491 | 12.9524 | 136 | 1.6121 |
| 1.5445 | 14.0 | 147 | 1.6113 |
| 1.5397 | 14.9524 | 157 | 1.6113 |
| 1.5392 | 16.0 | 168 | 1.6114 |
| 1.5337 | 16.9524 | 178 | 1.6111 |
| 1.5347 | 18.0 | 189 | 1.6111 |
| 1.5337 | 18.9524 | 199 | 1.6111 |
| 1.5351 | 19.0476 | 200 | 1.6111 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1 |