dmartincc commited on
Commit
0ee1570
·
verified ·
1 Parent(s): 7cfb70f

Model save

Browse files
Files changed (1) hide show
  1. README.md +10 -16
README.md CHANGED
@@ -6,7 +6,6 @@ tags:
6
  datasets:
7
  - imagefolder
8
  metrics:
9
- - f1
10
  - accuracy
11
  model-index:
12
  - name: vet-sm
@@ -21,12 +20,9 @@ model-index:
21
  split: train
22
  args: default
23
  metrics:
24
- - name: F1
25
- type: f1
26
- value: 0.47
27
  - name: Accuracy
28
  type: accuracy
29
- value: 0.31
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -36,10 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
36
 
37
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.2940
40
- - F1: 0.47
41
- - Roc Auc: 0.66
42
- - Accuracy: 0.31
43
 
44
  ## Model description
45
 
@@ -71,13 +65,13 @@ The following hyperparameters were used during training:
71
 
72
  ### Training results
73
 
74
- | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
75
- |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:|:--------:|
76
- | 0.4074 | 0.99 | 67 | 0.3991 | 0.0 | 0.5 | 0.0 |
77
- | 0.3597 | 2.0 | 135 | 0.3546 | 0.01 | 0.5 | 0.01 |
78
- | 0.3191 | 2.99 | 202 | 0.3307 | 0.18 | 0.55 | 0.1 |
79
- | 0.2902 | 4.0 | 270 | 0.3034 | 0.39 | 0.62 | 0.25 |
80
- | 0.2749 | 4.96 | 335 | 0.2940 | 0.47 | 0.66 | 0.31 |
81
 
82
 
83
  ### Framework versions
 
6
  datasets:
7
  - imagefolder
8
  metrics:
 
9
  - accuracy
10
  model-index:
11
  - name: vet-sm
 
20
  split: train
21
  args: default
22
  metrics:
 
 
 
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.6771653543307087
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.0058
36
+ - Accuracy: 0.6772
 
 
37
 
38
  ## Model description
39
 
 
65
 
66
  ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.7243 | 0.99 | 67 | 1.6282 | 0.4829 |
71
+ | 1.283 | 2.0 | 135 | 1.3131 | 0.5722 |
72
+ | 0.9453 | 2.99 | 202 | 1.1048 | 0.6430 |
73
+ | 0.7164 | 4.0 | 270 | 1.0157 | 0.6719 |
74
+ | 0.5591 | 4.96 | 335 | 1.0058 | 0.6772 |
75
 
76
 
77
  ### Framework versions