--- base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vet-sm results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6857386848847139 --- # vet-sm This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9284 - Accuracy: 0.6857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3437 | 1.0 | 207 | 1.3443 | 0.5457 | | 1.0892 | 2.0 | 415 | 1.0833 | 0.6277 | | 0.883 | 3.0 | 622 | 0.9944 | 0.6567 | | 0.5199 | 4.0 | 830 | 0.9295 | 0.6755 | | 0.4526 | 4.99 | 1035 | 0.9284 | 0.6857 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.1