--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - big_patent metrics: - rouge model-index: - name: my_T5_summarization_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: big_patent type: big_patent config: f split: validation args: f metrics: - name: Rouge1 type: rouge value: 0.2277 --- # my_T5_summarization_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the big_patent dataset. It achieves the following results on the evaluation set: - Loss: 1.9477 - Rouge1: 0.2277 - Rouge2: 0.1286 - Rougel: 0.1988 - Rougelsum: 0.1988 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.156 | 1.0 | 5348 | 2.0181 | 0.2264 | 0.1267 | 0.1971 | 0.1972 | 19.0 | | 2.1095 | 2.0 | 10696 | 1.9737 | 0.227 | 0.1276 | 0.1977 | 0.1978 | 19.0 | | 2.0867 | 3.0 | 16044 | 1.9545 | 0.2277 | 0.1285 | 0.1987 | 0.1988 | 19.0 | | 2.0577 | 4.0 | 21392 | 1.9477 | 0.2277 | 0.1286 | 0.1988 | 0.1988 | 19.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1