End of training
Browse files- README.md +101 -198
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,201 +1,104 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
###
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-xls-r-1b
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- common_voice_14_0
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: XLS-R-SWAHILI-ASR-CV-14-1B
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: common_voice_14_0
|
18 |
+
type: common_voice_14_0
|
19 |
+
config: sw
|
20 |
+
split: test
|
21 |
+
args: sw
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.2794303764906829
|
26 |
---
|
27 |
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# XLS-R-SWAHILI-ASR-CV-14-1B
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_14_0 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: inf
|
36 |
+
- Wer: 0.2794
|
37 |
+
- Cer: 0.0903
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 0.0003
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 8
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 2
|
61 |
+
- total_train_batch_size: 32
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_steps: 500
|
65 |
+
- training_steps: 10000
|
66 |
+
- mixed_precision_training: Native AMP
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|
71 |
+
|:-------------:|:-----:|:-----:|:------:|:---------------:|:------:|
|
72 |
+
| 1.9691 | 0.33 | 400 | 0.2374 | inf | 0.6776 |
|
73 |
+
| 0.5464 | 0.66 | 800 | 0.1758 | inf | 0.5598 |
|
74 |
+
| 0.4909 | 1.0 | 1200 | 0.1680 | inf | 0.5243 |
|
75 |
+
| 0.4263 | 1.33 | 1600 | 0.1502 | inf | 0.4706 |
|
76 |
+
| 0.4047 | 1.66 | 2000 | 0.1580 | inf | 0.4858 |
|
77 |
+
| 0.4054 | 1.99 | 2400 | 0.1426 | inf | 0.4348 |
|
78 |
+
| 0.3542 | 2.32 | 2800 | 0.1340 | inf | 0.4185 |
|
79 |
+
| 0.3525 | 2.66 | 3200 | 0.1400 | inf | 0.4311 |
|
80 |
+
| 0.3359 | 2.99 | 3600 | 0.1308 | inf | 0.4012 |
|
81 |
+
| 0.3006 | 3.32 | 4000 | 0.1278 | inf | 0.3939 |
|
82 |
+
| 0.326 | 1.83 | 4400 | inf | 0.4232 | 0.1362 |
|
83 |
+
| 0.326 | 1.99 | 4800 | inf | 0.4136 | 0.1350 |
|
84 |
+
| 0.3034 | 2.16 | 5200 | inf | 0.4282 | 0.1419 |
|
85 |
+
| 0.2925 | 2.32 | 5600 | inf | 0.3901 | 0.1282 |
|
86 |
+
| 0.2822 | 2.49 | 6000 | inf | 0.3876 | 0.1270 |
|
87 |
+
| 0.2659 | 2.66 | 6400 | inf | 0.3586 | 0.1159 |
|
88 |
+
| 0.2582 | 2.82 | 6800 | inf | 0.3536 | 0.1168 |
|
89 |
+
| 0.2414 | 2.99 | 7200 | inf | 0.3327 | 0.1069 |
|
90 |
+
| 0.208 | 3.15 | 7600 | inf | 0.3249 | 0.1053 |
|
91 |
+
| 0.1934 | 3.32 | 8000 | inf | 0.3120 | 0.1015 |
|
92 |
+
| 0.1881 | 3.49 | 8400 | inf | 0.3058 | 0.0993 |
|
93 |
+
| 0.1774 | 3.65 | 8800 | inf | 0.2962 | 0.0959 |
|
94 |
+
| 0.1736 | 3.82 | 9200 | inf | 0.2902 | 0.0935 |
|
95 |
+
| 0.1679 | 3.98 | 9600 | inf | 0.2843 | 0.0917 |
|
96 |
+
| 0.1436 | 4.15 | 10000 | inf | 0.2794 | 0.0903 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.38.1
|
102 |
+
- Pytorch 2.2.1
|
103 |
+
- Datasets 2.17.0
|
104 |
+
- Tokenizers 0.15.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3850260092
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4f6c06c708bf42bc87cfdd79dcd6f415a05e487e0bf46ac90ae35621e4e69d9
|
3 |
size 3850260092
|