File size: 7,304 Bytes
1f6a5b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/bin/bash

# Variables
REPO_URL="https://github.com/your-repo/mixture_of_agents.git"
PROJECT_DIR="mixture_of_agents"
PYTHON_VERSION="python3"
VENV_DIR="venv"
REQUIREMENTS_FILE="requirements.txt"

# Clone the repository
git clone $REPO_URL
cd $PROJECT_DIR

# Create a virtual environment
$PYTHON_VERSION -m venv $VENV_DIR

# Activate the virtual environment
source $VENV_DIR/bin/activate

# Create requirements.txt
cat <<EOL > $REQUIREMENTS_FILE

flask

transformers

datasets

numpy

pandas

EOL

# Install required libraries
pip install -r $REQUIREMENTS_FILE

# Create necessary directories
mkdir -p agents integration model dataset

# Create agent files
cat <<EOL > agents/front_end_agent.py

class FrontEndAgent:

    def __init__(self, model, tokenizer):

        self.model = model

        self.tokenizer = tokenizer



    def process(self, task_data):

        inputs = self.tokenizer(task_data['task'], return_tensors='pt')

        outputs = self.model.generate(**inputs)

        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

EOL

cat <<EOL > agents/back_end_agent.py

class BackEndAgent:

    def __init__(self, model, tokenizer):

        self.model = model

        self.tokenizer = tokenizer



    def process(self, task_data):

        inputs = self.tokenizer(task_data['task'], return_tensors='pt')

        outputs = self.model.generate(**inputs)

        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

EOL

cat <<EOL > agents/database_agent.py

class DatabaseAgent:

    def __init__(self, model, tokenizer):

        self.model = model

        self.tokenizer = tokenizer



    def process(self, task_data):

        inputs = self.tokenizer(task_data['task'], return_tensors='pt')

        outputs = self.model.generate(**inputs)

        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

EOL

cat <<EOL > agents/devops_agent.py

class DevOpsAgent:

    def __init__(self, model, tokenizer):

        self.model = model

        self.tokenizer = tokenizer



    def process(self, task_data):

        inputs = self.tokenizer(task_data['task'], return_tensors='pt')

        outputs = self.model.generate(**inputs)

        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

EOL

cat <<EOL > agents/project_management_agent.py

class ProjectManagementAgent:

    def __init__(self, model, tokenizer):

        self.model = model

        self.tokenizer = tokenizer



    def process(self, task_data):

        inputs = self.tokenizer(task_data['task'], return_tensors='pt')

        outputs = self.model.generate(**inputs)

        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

EOL

# Create integration layer
cat <<EOL > integration/integration_layer.py

class IntegrationLayer:

    def __init__(self, front_end_agent, back_end_agent, database_agent, devops_agent, project_management_agent):

        self.agents = {

            'front_end': front_end_agent,

            'back_end': back_end_agent,

            'database': database_agent,

            'devops': devops_agent,

            'project_management': project_management_agent

        }



    def process_task(self, task_type, task_data):

        if task_type in self.agents:

            return self.agents[task_type].process(task_data)

        else:

            raise ValueError("Unknown task type")

EOL

# Create model files
cat <<EOL > model/load_pretrained_model.py

from transformers import AutoModelForCausalLM, AutoTokenizer



def load_model_and_tokenizer():

    model_name = "gpt-3"

    tokenizer = AutoTokenizer.from_pretrained(model_name)

    model = AutoModelForCausalLM.from_pretrained(model_name)

    return model, tokenizer

EOL

cat <<EOL > model/fine_tune_model.py

from datasets import load_dataset

from transformers import Trainer, TrainingArguments



def fine_tune_model(model, tokenizer, dataset_path):

    dataset = load_dataset('json', data_files=dataset_path)

    

    def preprocess_function(examples):

        return tokenizer(examples['input'], truncation=True, padding=True)



    tokenized_datasets = dataset.map(preprocess_function, batched=True)



    training_args = TrainingArguments(

        output_dir="./results",

        evaluation_strategy="epoch",

        learning_rate=2e-5,

        per_device_train_batch_size=8,

        per_device_eval_batch_size=8,

        num_train_epochs=3,

        weight_decay=0.01,

    )



    trainer = Trainer(

        model=model,

        args=training_args,

        train_dataset=tokenized_datasets['train'],

        eval_dataset=tokenized_datasets['validation']

    )



    trainer.train()

EOL

# Create dataset file
cat <<EOL > dataset/code_finetune_dataset.json

[

  {

    "task": "front_end",

    "input": "Create a responsive HTML layout with CSS",

    "output": "<!DOCTYPE html><html><head><style>body {margin: 0; padding: 0;}</style></head><body><div class='container'></div></body></html>"

  },

  {

    "task": "back_end",

    "input": "Develop a REST API endpoint in Node.js",

    "output": "const express = require('express'); const app = express(); app.get('/api', (req, res) => res.send('Hello World!')); app.listen(3000);"

  }

]

EOL

# Create app.py
cat <<EOL > app.py

from flask import Flask, request, jsonify

from transformers import AutoModelForCausalLM, AutoTokenizer

from agents.front_end_agent import FrontEndAgent

from agents.back_end_agent import BackEndAgent

from agents.database_agent import DatabaseAgent

from agents.devops_agent import DevOpsAgent

from agents.project_management_agent import ProjectManagementAgent

from integration.integration_layer import IntegrationLayer



app = Flask(__name__)



# Load the model and tokenizer

model_name = "gpt-3"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name)



# Initialize agents

front_end_agent = FrontEndAgent(model, tokenizer)

back_end_agent = BackEndAgent(model, tokenizer)

database_agent = DatabaseAgent(model, tokenizer)

devops_agent = DevOpsAgent(model, tokenizer)

project_management_agent = ProjectManagementAgent(model, tokenizer)

integration_layer = IntegrationLayer(front_end_agent, back_end_agent, database_agent, devops_agent, project_management_agent)



@app.route('/')

def home():

    return "Welcome to the Mixture of Agents Model API!"



@app.route('/process', methods=['POST'])

def process_task():

    data = request.json

    task_type = data.get('task_type')

    task_data = data.get('task_data')

    

    if not task_type or not task_data:

        return jsonify({"error": "task_type and task_data are required"}), 400



    try:

        result = integration_layer.process_task(task_type, task_data)

        return jsonify({"result": result})

    except ValueError as e:

        return jsonify({"error": str(e)}), 400



if __name__ == '__main__':

    app.run(debug=True)

EOL

# Provide instructions for running the app
echo -e "\nSetup complete. To run the application:\n"
echo "1. Activate the virtual environment:"
echo "   source $VENV_DIR/bin/activate"
echo "2. Start the Flask application:"
echo "   python app.py"
chmod +x setup.sh
./setup.sh