Adapters
English
code
File size: 1,275 Bytes
7b93fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset

# Load dataset - CodeParrot is a good example dataset
dataset = load_dataset('codeparrot/code-to-text')

# Load pre-trained model and tokenizer
model = GPT2LMHeadModel.from_pretrained('gpt2-medium')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')

# Tokenize dataset
def tokenize_function(examples):
    return tokenizer(examples['code'], truncation=True, padding='max_length', max_length=512)

tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=['code'])

# Training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=5e-5,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    num_train_epochs=3,
    weight_decay=0.01,
    push_to_hub=True,
    hub_model_id='dnnsdunca/UANN',
    hub_token='YOUR_HUGGINGFACE_TOKEN'
)

# Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets['train'],
    eval_dataset=tokenized_datasets['validation'],
)

# Train model
trainer.train()

# Save the model
model.save_pretrained('./codegen_model')
tokenizer.save_pretrained('./codegen_model')