ComBack_Models / Script /Exp_Script /Code-LLaMA /calculate_codellama_gen.py
unknown
add files
74cea47
raw
history blame
21.2 kB
import os
# from tree_sitter import Language, Parser
# # import pandas as pd
# import openpyxl
import json
import time
import csv
import pathlib
import difflib
import re
from bleu import _bleu
from fuzzywuzzy import fuzz
import random
import numpy as np
from transformers import RobertaTokenizer
#tokens = nltk.word_tokenize(sentence)
folder = str(pathlib.Path(__file__).parent.resolve())
isa_type_dir = folder+"/../../../Dataset"
src_dir = folder+"/../../../Dataset/Code_Generation"
dst_dir = folder
train_lis = []
valid_lis = []
test_lis = []
target_clf = {}
def get_target_clf_list():
global target_clf
with open(isa_type_dir+"/comback_isa_type.csv","r",encoding="utf-8") as f:
reader = csv.reader(f)
for idx, l in enumerate(reader):
if l[1].lower() == "arc" or l[1].lower() == "riscv" or l[1].lower() == "nvptx":
continue
if l[0] + " " + l[2] not in target_clf.keys():
target_clf[l[0] + " " + l[2]] = [l[1]]
else:
target_clf[l[0] + " " + l[2]] += [l[1]]
def Calculate_Statements_Ratio(Src_List, Fork_Lis, src_name, fork_name):
src_code = ""
Fork_code = ""
idx = 0
cnt_stmt = 0.0
while idx < len(Src_List):
src_code += Src_List[idx].replace(src_name, "").replace(src_name.upper(), "")
if Src_List[idx] in [";", ":", "{", "}"]:
src_code += "\n"
cnt_stmt += 1
idx += 1
while idx < len(Fork_Lis):
Fork_code += Fork_Lis[idx].replace(fork_name, "").replace(fork_name.upper(), "")
if Fork_Lis[idx] in [";", ":", "{", "}"]:
Fork_code += "\n"
idx += 1
code_same = 0
code_modi = 0
code_add = 0
diff_code = list(difflib.Differ().compare(src_code.splitlines(), Fork_code.splitlines()))
for idx, dv in enumerate(diff_code):
if dv[0] == '-':
if idx < len(diff_code) - 1 and diff_code[idx+1][0] == '?':
code_modi += 1
else:
code_add += 1
elif dv[0] == '+':
continue
elif dv[0] == '?':
continue
#vega_add -= 1
elif dv.strip().replace("\n", "") == '':
continue
else:
code_same += 1
return round(float(code_same) / cnt_stmt, 2)
def Calculate_Gen():
get_target_clf_list()
print("############## Exp 2: Calculate Code-LLaMA Gen ################\n")
test_lis = ["nvptx","arc","riscv"]
avg_accuracy = {}
codellama_gcc_code = {}
codellama_llvm_code = {}
dst_file = dst_dir+"/Input/codellama_gen_output_cleaned.csv"
with open(dst_file,encoding="utf-8") as f:
reader = csv.reader(f)
for idx, row in enumerate(reader):
if row[0] == "GCC":
codellama_gcc_code[row[1] + " " + str(row[2])] = row[3]
else:
codellama_llvm_code[row[1] + " " + str(row[2])] = row[3]
for comp_type in ["GCC", "LLVM"]:
for isa_type in ["GPU", "MPU", "CPU"]:
target_lis = target_clf[comp_type + " " + isa_type]
test_target_dic = {}
cnt_idx = 0
if comp_type == "GCC":
if isa_type == "CPU":
cnt_idx = 0
for line in open(src_dir + "/GCC/riscv.jsonl", 'r'):
dic = json.loads(line)
test_target_dic["riscv" + " " + str(cnt_idx)] = dic["ground_truth"]
cnt_idx += 1
total_EM = 0.0
total_ED = 0.0
total_PoVS = 0.0
total_BLEU4 = 0.0
for k in test_target_dic.keys():
edit_dis = 0.0
EM = 0.0
bleu4 = 0.0
stmt_mod = 0.0
src_code = " ".join(test_target_dic[k]).replace("riscv", "")
if k in codellama_gcc_code.keys():
chat_code = " ".join(codellama_gcc_code[k]).replace("riscv", "").replace("RISCV", "")
stmt_mod = Calculate_Statements_Ratio(test_target_dic[k], codellama_gcc_code[k], "riscv", "riscv")
with open(dst_dir+"/test.output",'w') as f, open(dst_dir+"/test.gold",'w') as f1:
f.write(chat_code+'\n')
f1.write(src_code+'\n')
if chat_code==src_code:
EM = 1
edit_dis = fuzz.ratio(chat_code, src_code)
if chat_code.strip() == "":
bleu4 = 0
else:
bleu4 = _bleu(dst_dir+"/test.gold", dst_dir+"/test.output")
total_BLEU4 += bleu4
total_ED += edit_dis
total_PoVS += stmt_mod
total_EM += EM
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "riscv", k.split(" ")[1], str(round(float(bleu4),2)), str(round(EM*100,2)), str(round(float(edit_dis),2)), str(round(float(stmt_mod)*100,2))])
else:
print(k)
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "riscv", "average", str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))])
avg_accuracy[comp_type + " " + "riscv"] = [str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))]
if isa_type == "GPU":
cnt_idx = 0
for line in open(src_dir + "/GCC/nvptx.jsonl", 'r'):
dic = json.loads(line)
test_target_dic["nvptx" + " " + str(cnt_idx)] = dic["ground_truth"]
cnt_idx += 1
total_EM = 0.0
total_ED = 0.0
total_PoVS = 0.0
total_BLEU4 = 0.0
for k in test_target_dic.keys():
edit_dis = 0.0
EM = 0.0
bleu4 = 0.0
stmt_mod = 0.0
src_code = " ".join(test_target_dic[k]).replace("nvptx", "")
if k in codellama_gcc_code.keys():
chat_code = " ".join(codellama_gcc_code[k]).replace("nvptx", "").replace("NVPTX", "")
stmt_mod = Calculate_Statements_Ratio(test_target_dic[k], codellama_gcc_code[k], "nvptx", "nvptx")
with open(dst_dir+"/test.output",'w') as f, open(dst_dir+"/test.gold",'w') as f1:
f.write(chat_code+'\n')
f1.write(src_code+'\n')
if chat_code==src_code:
EM = 1
edit_dis = fuzz.ratio(chat_code, src_code)
if chat_code.strip() == "":
bleu4 = 0
else:
bleu4 = _bleu(dst_dir+"/test.gold", dst_dir+"/test.output")
total_BLEU4 += bleu4
total_ED += edit_dis
total_PoVS += stmt_mod
total_EM += EM
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "nvptx", k.split(" ")[1], str(round(float(bleu4),2)), str(round(EM*100,2)), str(round(float(edit_dis),2)), str(round(float(stmt_mod)*100,2))])
else:
print(k)
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "nvptx", "average", str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))])
avg_accuracy[comp_type + " " + "nvptx"] = [str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))]
if isa_type == "MPU":
cnt_idx = 0
for line in open(src_dir + "/GCC/arc.jsonl", 'r'):
dic = json.loads(line)
test_target_dic["arc" + " " + str(cnt_idx)] = dic["ground_truth"]
cnt_idx += 1
total_EM = 0.0
total_ED = 0.0
total_PoVS = 0.0
total_BLEU4 = 0.0
for k in test_target_dic.keys():
edit_dis = 0.0
EM = 0.0
bleu4 = 0.0
stmt_mod = 0.0
src_code = " ".join(test_target_dic[k]).replace("arc", "")
if k in codellama_gcc_code.keys():
chat_code = " ".join(codellama_gcc_code[k]).replace("arc", "").replace("ARC", "")
stmt_mod = Calculate_Statements_Ratio(test_target_dic[k], codellama_gcc_code[k], "arc", "arc")
with open(dst_dir+"/test.output",'w') as f, open(dst_dir+"/test.gold",'w') as f1:
f.write(chat_code+'\n')
f1.write(src_code+'\n')
if chat_code==src_code:
EM = 1
edit_dis = fuzz.ratio(chat_code, src_code)
if chat_code.strip() == "":
bleu4 = 0
else:
bleu4 = _bleu(dst_dir+"/test.gold", dst_dir+"/test.output")
total_BLEU4 += bleu4
total_ED += edit_dis
total_PoVS += stmt_mod
total_EM += EM
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "arc", k.split(" ")[1], str(round(float(bleu4),2)), str(round(EM*100,2)), str(round(float(edit_dis),2)), str(round(float(stmt_mod)*100,2))])
else:
print(k)
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "arc", "average", str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))])
avg_accuracy[comp_type + " " + "arc"] = [str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))]
if comp_type == "LLVM":
if isa_type == "CPU":
cnt_idx = 0
for line in open(src_dir + "/LLVM/RISCV.jsonl", 'r'):
dic = json.loads(line)
test_target_dic["RISCV" + " " + str(cnt_idx)] = dic["ground_truth"]
cnt_idx += 1
total_EM = 0.0
total_ED = 0.0
total_PoVS = 0.0
total_BLEU4 = 0.0
for k in test_target_dic.keys():
edit_dis = 0.0
EM = 0.0
bleu4 = 0.0
stmt_mod = 0.0
src_code = " ".join(test_target_dic[k]).replace("RISCV", "")
if k in codellama_llvm_code.keys():
chat_code = " ".join(codellama_llvm_code[k]).replace("riscv", "").replace("RISCV", "")
stmt_mod = Calculate_Statements_Ratio(test_target_dic[k], codellama_llvm_code[k], "riscv", "riscv")
with open(dst_dir+"/test.output",'w') as f, open(dst_dir+"/test.gold",'w') as f1:
f.write(chat_code+'\n')
f1.write(src_code+'\n')
if chat_code==src_code:
EM = 1
edit_dis = fuzz.ratio(chat_code, src_code)
if chat_code.strip() == "":
bleu4 = 0
else:
bleu4 = _bleu(dst_dir+"/test.gold", dst_dir+"/test.output")
total_BLEU4 += bleu4
total_ED += edit_dis
total_PoVS += stmt_mod
total_EM += EM
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "RISCV", k.split(" ")[1], str(round(float(bleu4),2)), str(round(EM*100,2)), str(round(float(edit_dis),2)), str(round(float(stmt_mod)*100,2))])
else:
print(k)
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "RISCV", "average", str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))])
avg_accuracy[comp_type + " " + "RISCV"] = [str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))]
if isa_type == "GPU":
cnt_idx = 0
for line in open(src_dir + "/LLVM/NVPTX.jsonl", 'r'):
dic = json.loads(line)
test_target_dic["NVPTX" + " " + str(cnt_idx)] = dic["ground_truth"]
cnt_idx += 1
total_EM = 0.0
total_ED = 0.0
total_PoVS = 0.0
total_BLEU4 = 0.0
for k in test_target_dic.keys():
edit_dis = 0.0
EM = 0.0
bleu4 = 0.0
stmt_mod = 0.0
src_code = " ".join(test_target_dic[k]).replace("NVPTX", "")
if k in codellama_llvm_code.keys():
chat_code = " ".join(codellama_llvm_code[k]).replace("nvptx", "").replace("NVPTX", "")
stmt_mod = Calculate_Statements_Ratio(test_target_dic[k], codellama_llvm_code[k], "nvptx", "nvptx")
with open(dst_dir+"/test.output",'w') as f, open(dst_dir+"/test.gold",'w') as f1:
f.write(chat_code+'\n')
f1.write(src_code+'\n')
if chat_code==src_code:
EM = 1
edit_dis = fuzz.ratio(chat_code, src_code)
if chat_code.strip() == "":
bleu4 = 0
else:
bleu4 = _bleu(dst_dir+"/test.gold", dst_dir+"/test.output")
total_BLEU4 += bleu4
total_ED += edit_dis
total_PoVS += stmt_mod
total_EM += EM
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "NVPTX", k.split(" ")[1], str(round(float(bleu4),2)), str(round(EM*100,2)), str(round(float(edit_dis),2)), str(round(float(stmt_mod)*100,2))])
else:
print(k)
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "NVPTX", "average", str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))])
avg_accuracy[comp_type + " " + "NVPTX"] = [str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))]
if isa_type == "MPU":
cnt_idx = 0
for line in open(src_dir + "/LLVM/ARC.jsonl", 'r'):
dic = json.loads(line)
test_target_dic["ARC" + " " + str(cnt_idx)] = dic["ground_truth"]
cnt_idx += 1
total_EM = 0.0
total_ED = 0.0
total_PoVS = 0.0
total_BLEU4 = 0.0
for k in test_target_dic.keys():
edit_dis = 0.0
EM = 0.0
bleu4 = 0.0
stmt_mod = 0.0
src_code = " ".join(test_target_dic[k]).replace("ARC", "")
if k in codellama_llvm_code.keys():
chat_code = " ".join(codellama_llvm_code[k]).replace("arc", "").replace("ARC", "")
stmt_mod = Calculate_Statements_Ratio(test_target_dic[k], codellama_llvm_code[k], "arc", "arc")
with open(dst_dir+"/test.output",'w') as f, open(dst_dir+"/test.gold",'w') as f1:
f.write(chat_code+'\n')
f1.write(src_code+'\n')
if chat_code==src_code:
EM = 1
edit_dis = fuzz.ratio(chat_code, src_code)
if chat_code.strip() == "":
bleu4 = 0
else:
bleu4 = _bleu(dst_dir+"/test.gold", dst_dir+"/test.output")
total_BLEU4 += bleu4
total_ED += edit_dis
total_PoVS += stmt_mod
total_EM += EM
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "ARC", k.split(" ")[1], str(round(float(bleu4),2)), str(round(EM*100,2)), str(round(float(edit_dis),2)), str(round(float(stmt_mod)*100,2))])
else:
print(k)
with open(dst_dir + '/result.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([comp_type, "ARC", "average", str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))])
avg_accuracy[comp_type + " " + "ARC"] = [str(round(float(total_BLEU4 / cnt_idx),2)), str(round((total_EM / cnt_idx)*100,2)), str(round(float(total_ED / cnt_idx),2)), str(round(float(total_PoVS / cnt_idx)*100,2))]
return avg_accuracy
if __name__ == "__main__":
with open(dst_dir + '/result.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["Compiler Type", "Target", "Idx", "BLEU4", "Exact Match", "Edit Didtance", "Stmt_Ratio"])
avg_dic = Calculate_Gen()
for k in avg_dic:
print("########################")
print(k)
print(" ".join(["BLEU4", "Exact Match", "Edit Didtance", "Stmt_Ratio"]))
print(" ".join(avg_dic[k]))