# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy class Seq2Seq(nn.Module): """ Build Seqence-to-Sequence. Parameters: * `encoder`- encoder of seq2seq model. e.g. roberta * `decoder`- decoder of seq2seq model. e.g. transformer * `config`- configuration of encoder model. * `beam_size`- beam size for beam search. * `max_length`- max length of target for beam search. * `sos_id`- start of symbol ids in target for beam search. * `eos_id`- end of symbol ids in target for beam search. """ def __init__(self, encoder,decoder, config, beam_size=None, max_length=None, sos_id=None, eos_id=None): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder=decoder self.config=config self.register_buffer( "bias", torch.tril(torch.ones((1024, 1024), dtype=torch.uint8)).view(1,1024, 1024) ) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head.weight = self.encoder.embeddings.word_embeddings.weight self.lsm = nn.LogSoftmax(dim=-1) self.beam_size = beam_size self.max_length = max_length self.sos_id = sos_id self.eos_id = eos_id def forward(self, source_ids, target_ids=None): if target_ids is None: return self.generate(source_ids) mask = source_ids.ne(1)[:,None,:]*source_ids.ne(1)[:,:,None] encoder_output = self.encoder(source_ids,attention_mask=mask,use_cache=True) ids = torch.cat((source_ids,target_ids),-1) mask = self.bias[:,source_ids.size(-1):ids.size(-1),:ids.size(-1)].bool() mask = mask & ids[:,None,:].ne(1) out = self.decoder(target_ids,attention_mask=mask,past_key_values=encoder_output.past_key_values).last_hidden_state lm_logits = self.lm_head(out) # Shift so that tokens < n predict n active_loss = target_ids[..., 1:].ne(1).view(-1) shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = target_ids[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss], shift_labels.view(-1)[active_loss]) outputs = loss,loss*active_loss.sum(),active_loss.sum() return outputs def generate(self, source_ids): mask = source_ids.ne(1)[:,None,:]*source_ids.ne(1)[:,:,None] encoder_output = self.encoder(source_ids,attention_mask=mask,use_cache=True) preds = [] zero = torch.cuda.LongTensor(1).fill_(0) source_len = list(source_ids.ne(1).sum(-1).cpu().numpy()) for i in range(source_ids.shape[0]): context = [[x[i:i+1,:,:source_len[i]].repeat(self.beam_size,1,1,1) for x in y] for y in encoder_output.past_key_values] beam = Beam(self.beam_size,self.sos_id,self.eos_id) input_ids = beam.getCurrentState() context_ids = source_ids[i:i+1,:source_len[i]].repeat(self.beam_size,1) for _ in range(self.max_length): if beam.done(): break ids = torch.cat((context_ids,input_ids),-1) mask = self.bias[:,context_ids.size(-1):ids.size(-1),:ids.size(-1)].bool() mask = mask & ids[:,None,:].ne(1) out = self.decoder(input_ids,attention_mask=mask,past_key_values=context).last_hidden_state hidden_states = out[:,-1,:] out = self.lsm(self.lm_head(hidden_states)).data beam.advance(out) input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin())) input_ids = torch.cat((input_ids,beam.getCurrentState()),-1) hyp = beam.getHyp(beam.getFinal()) pred = beam.buildTargetTokens(hyp)[:self.beam_size] pred = [torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred] preds.append(torch.cat(pred,0).unsqueeze(0)) preds = torch.cat(preds,0) return preds class Beam(object): def __init__(self, size,sos,eos): self.size = size self.tt = torch.cuda # The score for each translation on the beam. self.scores = self.tt.FloatTensor(size).zero_() # The backpointers at each time-step. self.prevKs = [] # The outputs at each time-step. self.nextYs = [self.tt.LongTensor(size) .fill_(0)] self.nextYs[0][0] = sos # Has EOS topped the beam yet. self._eos = eos self.eosTop = False # Time and k pair for finished. self.finished = [] def getCurrentState(self): "Get the outputs for the current timestep." batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) return batch def getCurrentOrigin(self): "Get the backpointers for the current timestep." return self.prevKs[-1] def advance(self, wordLk): """ Given prob over words for every last beam `wordLk` and attention `attnOut`: Compute and update the beam search. Parameters: * `wordLk`- probs of advancing from the last step (K x words) * `attnOut`- attention at the last step Returns: True if beam search is complete. """ numWords = wordLk.size(1) # Sum the previous scores. if len(self.prevKs) > 0: beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) # Don't let EOS have children. for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: beamLk[i] = -1e20 else: beamLk = wordLk[0] flatBeamLk = beamLk.view(-1) bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) self.scores = bestScores # bestScoresId is flattened beam x word array, so calculate which # word and beam each score came from prevK = bestScoresId // numWords self.prevKs.append(prevK) self.nextYs.append((bestScoresId - prevK * numWords)) for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: s = self.scores[i] self.finished.append((s, len(self.nextYs) - 1, i)) # End condition is when top-of-beam is EOS and no global score. if self.nextYs[-1][0] == self._eos: self.eosTop = True def done(self): return self.eosTop and len(self.finished) >=self.size def getFinal(self): if len(self.finished) == 0: self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) self.finished.sort(key=lambda a: -a[0]) if len(self.finished) != self.size: unfinished=[] for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] != self._eos: s = self.scores[i] unfinished.append((s, len(self.nextYs) - 1, i)) unfinished.sort(key=lambda a: -a[0]) self.finished+=unfinished[:self.size-len(self.finished)] return self.finished[:self.size] def getHyp(self, beam_res): """ Walk back to construct the full hypothesis. """ hyps=[] for _,timestep, k in beam_res: hyp = [] for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): hyp.append(self.nextYs[j+1][k]) k = self.prevKs[j][k] hyps.append(hyp[::-1]) return hyps def buildTargetTokens(self, preds): sentence=[] for pred in preds: tokens = [] for tok in pred: if tok==self._eos: break tokens.append(tok) sentence.append(tokens) return sentence