File size: 6,869 Bytes
d26715f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch.nn as nn
import torch.nn.functional as F
import torch
from huggingface_hub import PyTorchModelHubMixin

class conv3d(nn.Module, PyTorchModelHubMixin):
    def __init__(self, in_channels, out_channels):
        """
        + Instantiate modules: conv-relu-norm
        + Assign them as member variables
        """
        super(conv3d, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=5, padding=2)
        self.relu = nn.LeakyReLU(0.2)
        # with learnable parameters
        self.norm = nn.InstanceNorm3d(out_channels, affine=True)

    def forward(self, x):
        return self.relu(self.norm(self.conv(x)))


class conv3d_x3(nn.Module, PyTorchModelHubMixin):
    """Three serial convs with a residual connection.
    Structure:
        inputs --> β‘  --> β‘‘ --> β‘’ --> outputs
                   ↓ --> add--> ↑
    """

    def __init__(self, in_channels, out_channels):
        super(conv3d_x3, self).__init__()
        self.conv_1 = conv3d(in_channels, out_channels)
        self.conv_2 = conv3d(out_channels, out_channels)
        self.conv_3 = conv3d(out_channels, out_channels)
        self.skip_connection=nn.Conv3d(in_channels,out_channels,1)

    def forward(self, x):
        z_1 = self.conv_1(x)
        z_3 = self.conv_3(self.conv_2(z_1))
        return z_3 + self.skip_connection(x)

class conv3d_x2(nn.Module, PyTorchModelHubMixin):
    """Three serial convs with a residual connection.
    Structure:
        inputs --> β‘  --> β‘‘ --> β‘’ --> outputs
                   ↓ --> add--> ↑
    """

    def __init__(self, in_channels, out_channels):
        super(conv3d_x2, self).__init__()
        self.conv_1 = conv3d(in_channels, out_channels)
        self.conv_2 = conv3d(out_channels, out_channels)
        self.skip_connection=nn.Conv3d(in_channels,out_channels,1)

    def forward(self, x):
        z_1 = self.conv_1(x)
        z_2 = self.conv_2(z_1)
        return z_2 + self.skip_connection(x)


class conv3d_x1(nn.Module, PyTorchModelHubMixin):
    """Three serial convs with a residual connection.
    Structure:
        inputs --> β‘  --> β‘‘ --> β‘’ --> outputs
                   ↓ --> add--> ↑
    """

    def __init__(self, in_channels, out_channels):
        super(conv3d_x1, self).__init__()
        self.conv_1 = conv3d(in_channels, out_channels)
        self.skip_connection=nn.Conv3d(in_channels,out_channels,1)

    def forward(self, x):
        z_1 = self.conv_1(x)
        return z_1 + self.skip_connection(x)

class deconv3d_x3(nn.Module, PyTorchModelHubMixin):
    def __init__(self, in_channels, out_channels):
        super(deconv3d_x3, self).__init__()
        self.up = deconv3d_as_up(in_channels, out_channels, 2, 2)
        self.lhs_conv = conv3d(out_channels // 2, out_channels)
        self.conv_x3 = nn.Sequential(
            nn.Conv3d(2*out_channels, out_channels,5,1,2),
            nn.LeakyReLU(0.1),
            nn.Conv3d(out_channels, out_channels,5,1,2),
            nn.LeakyReLU(0.1),
            nn.Conv3d(out_channels, out_channels,5,1,2),
            nn.LeakyReLU(0.1),
        )

    def forward(self, lhs, rhs):
        rhs_up = self.up(rhs)
        lhs_conv = self.lhs_conv(lhs)
        rhs_add = torch.cat((rhs_up, lhs_conv),dim=1) 
        return self.conv_x3(rhs_add)+ rhs_up

class deconv3d_x2(nn.Module, PyTorchModelHubMixin):
    def __init__(self, in_channels, out_channels):
        super(deconv3d_x2, self).__init__()
        self.up = deconv3d_as_up(in_channels, out_channels, 2, 2)
        self.lhs_conv = conv3d(out_channels // 2, out_channels)
        self.conv_x2= nn.Sequential(
            nn.Conv3d(2*out_channels, out_channels,5,1,2),
            nn.LeakyReLU(0.1),
            nn.Conv3d(out_channels, out_channels,5,1,2),
            nn.LeakyReLU(0.1),
        )

    def forward(self, lhs, rhs):
        rhs_up = self.up(rhs)
        lhs_conv = self.lhs_conv(lhs)
        rhs_add = torch.cat((rhs_up, lhs_conv),dim=1) 
        return self.conv_x2(rhs_add)+ rhs_up

class deconv3d_x1(nn.Module, PyTorchModelHubMixin):
    def __init__(self, in_channels, out_channels):
        super(deconv3d_x1, self).__init__()
        self.up = deconv3d_as_up(in_channels, out_channels, 2, 2)
        self.lhs_conv = conv3d(out_channels // 2, out_channels)
        self.conv_x1 = nn.Sequential(
            nn.Conv3d(2*out_channels, out_channels,5,1,2),
            nn.LeakyReLU(0.2),
        )

    def forward(self, lhs, rhs):
        rhs_up = self.up(rhs)
        lhs_conv = self.lhs_conv(lhs)
        rhs_add = torch.cat((rhs_up, lhs_conv),dim=1) 
        return self.conv_x1(rhs_add)+ rhs_up
        

def conv3d_as_pool(in_channels, out_channels, kernel_size=2, stride=2):
    return nn.Sequential(
        nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding=0),
        nn.LeakyReLU(0.2))


def deconv3d_as_up(in_channels, out_channels, kernel_size=2, stride=2):
    return nn.Sequential(
        nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride),
        nn.PReLU()
    )


class softmax_out(nn.Module, PyTorchModelHubMixin):
    def __init__(self, in_channels, out_channels):
        super(softmax_out, self).__init__()
        self.conv_1 = nn.Conv3d(in_channels, out_channels, kernel_size=5, padding=2)
        self.conv_2 = nn.Conv3d(out_channels, out_channels, kernel_size=1, padding=0)

    def forward(self, x):
        """Output with shape [batch_size, 1, depth, height, width]."""
        # Do NOT add normalize layer, or its values vanish.
        y_conv = self.conv_2(self.conv_1(x))
        return y_conv


class VNet(nn.Module, PyTorchModelHubMixin):
    def __init__(self):
        super(VNet, self).__init__()
        self.conv_1 = conv3d_x1(1, 16)
        self.pool_1 = conv3d_as_pool(16, 32)
        self.conv_2 = conv3d_x2(32, 32)
        self.pool_2 = conv3d_as_pool(32, 64)
        self.conv_3 = conv3d_x3(64, 64)
        self.pool_3 = conv3d_as_pool(64, 128)
        self.conv_4 = conv3d_x3(128, 128)
        self.pool_4 = conv3d_as_pool(128, 256)

        self.bottom = conv3d_x3(256, 256)

        self.deconv_4 = deconv3d_x3(256, 256)
        self.deconv_3 = deconv3d_x3(256, 128)
        self.deconv_2 = deconv3d_x2(128, 64)
        self.deconv_1 = deconv3d_x1(64, 32)

        self.out = softmax_out(32, 1)

    def forward(self, x):
        conv_1 = self.conv_1(x)
        pool = self.pool_1(conv_1)
        conv_2 = self.conv_2(pool)
        pool = self.pool_2(conv_2)
        conv_3 = self.conv_3(pool)
        pool = self.pool_3(conv_3)
        conv_4 = self.conv_4(pool)
        pool = self.pool_4(conv_4)
        bottom = self.bottom(pool)
        deconv = self.deconv_4(conv_4, bottom)
        deconv = self.deconv_3(conv_3, deconv)
        deconv = self.deconv_2(conv_2, deconv)
        deconv = self.deconv_1(conv_1, deconv)
        return self.out(deconv)