File size: 3,605 Bytes
a45c3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd0374
 
 
 
 
 
a45c3ec
 
4fd0374
 
 
a45c3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd0374
a45c3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd0374
a45c3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd0374
a45c3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fd0374
 
a45c3ec
 
 
 
 
 
 
 
 
 
4fd0374
 
a45c3ec
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: lora-out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
# Llama-2-7b
# base_model: daryl149/llama-2-7b-chat-hf
# model_type: LlamaForCausalLM
# tokenizer_type: LlamaTokenizer
# is_llama_derived_model: true

#Mistral-7b
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

# git clone https://github.com/OpenAccess-AI-Collective/axolotl
# cd axolotl

# pip3 install packaging
# pip3 install -e '.[flash-attn,deepspeed]'

# accelerate launch -m axolotl.cli.train ./llama_7b_config.yaml

# accelerate launch -m axolotl.cli.inference ./llama_7b_config.yaml \
#     --lora_model_dir="dohonba/mistral_7b_fingpt"

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: dohonba/combi
    type: context_qa.load_v2
  # - path: dohonba/tfns
  #   type: context_qa.load_v2
  # - path: dohonba/auditor_sentiment
  #   type: context_qa.load_v2
  # - path: dohonba/tfns
  #   type: context_qa.load_v2
    
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out

sequence_len: 512
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 14
# max_steps: 1000
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 50
evals_per_epoch: 0
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
```

</details><br>

# lora-out

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0917

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 14
- eval_batch_size: 14
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.08          | 1.02  | 566  | 0.0986          |
| 0.0919        | 1.98  | 1110 | 0.0917          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.37.0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0