--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # Llama-2-7b # base_model: daryl149/llama-2-7b-chat-hf # model_type: LlamaForCausalLM # tokenizer_type: LlamaTokenizer # is_llama_derived_model: true #Mistral-7b base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true # git clone https://github.com/OpenAccess-AI-Collective/axolotl # cd axolotl # pip3 install packaging # pip3 install -e '.[flash-attn,deepspeed]' # accelerate launch -m axolotl.cli.train ./llama_7b_config.yaml # accelerate launch -m axolotl.cli.inference ./llama_7b_config.yaml \ # --lora_model_dir="dohonba/mistral_7b_fingpt" load_in_8bit: true load_in_4bit: false strict: false datasets: - path: dohonba/combi type: context_qa.load_v2 # - path: dohonba/tfns # type: context_qa.load_v2 # - path: dohonba/auditor_sentiment # type: context_qa.load_v2 # - path: dohonba/tfns # type: context_qa.load_v2 dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out sequence_len: 512 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 14 # max_steps: 1000 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 50 evals_per_epoch: 0 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# lora-out This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.08 | 1.02 | 566 | 0.0986 | | 0.0919 | 1.98 | 1110 | 0.0917 | ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0