--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-synthetic-generated-only results: [] --- # deberta-v3-large-finetuned-synthetic-generated-only This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0094 - F1: 0.9839 - Precision: 0.9849 - Recall: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.009 | 1.0 | 10387 | 0.0104 | 0.9722 | 0.9919 | 0.9533 | | 0.0013 | 2.0 | 20774 | 0.0067 | 0.9825 | 0.9844 | 0.9805 | | 0.0006 | 3.0 | 31161 | 0.0077 | 0.9843 | 0.9902 | 0.9786 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1