File size: 3,365 Bytes
d90c9c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144f214
 
 
 
 
d90c9c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144f214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d90c9c1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-german-cased-20000-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-german-cased-20000-ner

This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0826
- Precision: 0.8904
- Recall: 0.8693
- F1: 0.8797
- Accuracy: 0.9832

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.11  | 64   | 0.0840          | 0.8076    | 0.7842 | 0.7957 | 0.9752   |
| No log        | 0.23  | 128  | 0.0787          | 0.8119    | 0.7735 | 0.7922 | 0.9746   |
| No log        | 0.34  | 192  | 0.0677          | 0.8264    | 0.8362 | 0.8313 | 0.9794   |
| No log        | 0.45  | 256  | 0.0630          | 0.8440    | 0.8125 | 0.8280 | 0.9801   |
| No log        | 0.57  | 320  | 0.0664          | 0.8035    | 0.8391 | 0.8209 | 0.9782   |
| No log        | 0.68  | 384  | 0.0674          | 0.8850    | 0.8285 | 0.8558 | 0.9819   |
| No log        | 0.79  | 448  | 0.0631          | 0.8834    | 0.8598 | 0.8714 | 0.9825   |
| 0.094         | 0.9   | 512  | 0.0572          | 0.8933    | 0.8462 | 0.8691 | 0.9832   |
| 0.094         | 1.02  | 576  | 0.0728          | 0.8520    | 0.8681 | 0.8600 | 0.9795   |
| 0.094         | 1.13  | 640  | 0.0784          | 0.8496    | 0.8717 | 0.8605 | 0.9800   |
| 0.094         | 1.24  | 704  | 0.0721          | 0.8868    | 0.8527 | 0.8695 | 0.9814   |
| 0.094         | 1.36  | 768  | 0.0700          | 0.8755    | 0.8362 | 0.8554 | 0.9808   |
| 0.094         | 1.47  | 832  | 0.0590          | 0.8662    | 0.8610 | 0.8636 | 0.9822   |
| 0.094         | 1.58  | 896  | 0.0615          | 0.8692    | 0.8764 | 0.8728 | 0.9821   |
| 0.094         | 1.7   | 960  | 0.0670          | 0.8812    | 0.8557 | 0.8683 | 0.9826   |
| 0.0413        | 1.81  | 1024 | 0.0623          | 0.9061    | 0.8557 | 0.8802 | 0.9843   |
| 0.0413        | 1.92  | 1088 | 0.0570          | 0.8891    | 0.8770 | 0.8830 | 0.9833   |
| 0.0413        | 2.04  | 1152 | 0.0643          | 0.8859    | 0.8859 | 0.8859 | 0.9831   |
| 0.0413        | 2.15  | 1216 | 0.0705          | 0.8824    | 0.8740 | 0.8782 | 0.9830   |
| 0.0413        | 2.26  | 1280 | 0.0698          | 0.8818    | 0.8557 | 0.8685 | 0.9824   |
| 0.0413        | 2.37  | 1344 | 0.0826          | 0.8904    | 0.8693 | 0.8797 | 0.9832   |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.9.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1