File size: 2,189 Bytes
754708b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- germa_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-german-cased-fine-tuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: germa_ner
type: germa_ner
args: default
metrics:
- name: Precision
type: precision
value: 0.8089260808926081
- name: Recall
type: recall
value: 0.872836719337848
- name: F1
type: f1
value: 0.8396670285921101
- name: Accuracy
type: accuracy
value: 0.9748511630761677
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-german-cased-fine-tuned-ner
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the germa_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0966
- Precision: 0.8089
- Recall: 0.8728
- F1: 0.8397
- Accuracy: 0.9749
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.159 | 1.0 | 737 | 0.0922 | 0.7472 | 0.8461 | 0.7936 | 0.9703 |
| 0.0714 | 2.0 | 1474 | 0.0916 | 0.7886 | 0.8713 | 0.8279 | 0.9731 |
| 0.0319 | 3.0 | 2211 | 0.0966 | 0.8089 | 0.8728 | 0.8397 | 0.9749 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.9.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1
|