--- license: mit tags: - generated_from_trainer datasets: - germa_ner metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-fine-tuned-ner results: - task: name: Token Classification type: token-classification dataset: name: germa_ner type: germa_ner args: default metrics: - name: Precision type: precision value: 0.8089260808926081 - name: Recall type: recall value: 0.872836719337848 - name: F1 type: f1 value: 0.8396670285921101 - name: Accuracy type: accuracy value: 0.9748511630761677 --- # bert-base-german-cased-fine-tuned-ner This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the germa_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0966 - Precision: 0.8089 - Recall: 0.8728 - F1: 0.8397 - Accuracy: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.159 | 1.0 | 737 | 0.0922 | 0.7472 | 0.8461 | 0.7936 | 0.9703 | | 0.0714 | 2.0 | 1474 | 0.0916 | 0.7886 | 0.8713 | 0.8279 | 0.9731 | | 0.0319 | 3.0 | 2211 | 0.0966 | 0.8089 | 0.8728 | 0.8397 | 0.9749 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1