--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-own-data-ner results: [] --- # bert-base-german-cased-own-data-ner This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0381 - Precision: 0.7815 - Recall: 0.8429 - F1: 0.8110 - Accuracy: 0.9914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 80 | 0.0443 | 0.7139 | 0.8464 | 0.7745 | 0.9889 | | No log | 2.0 | 160 | 0.0396 | 0.7692 | 0.8571 | 0.8108 | 0.9912 | | No log | 3.0 | 240 | 0.0381 | 0.7815 | 0.8429 | 0.8110 | 0.9914 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1