File size: 1,625 Bytes
5b4786e
 
 
8b2bb9b
54947ac
5d6e7ad
d232895
49cd757
32e93b2
54947ac
 
 
 
5b4786e
 
a5cd004
1f30fb0
 
 
 
5b4786e
 
 
b9431dc
32e93b2
 
 
 
 
 
 
 
 
07d81c1
2990f6d
 
 
 
 
b9431dc
488bf87
 
 
1ced666
488bf87
 
 
 
13bbfd2
488bf87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import torch
from transformers import TimesformerForVideoClassification
from preprocessing import read_video
import logging
import json
import traceback
import os
from typing import Dict, List, Any

# 로깅 설정
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class EndpointHandler:
    def __init__(self, model_dir):
        self.model = TimesformerForVideoClassification.from_pretrained(
            'donghuna/timesformer-base-finetuned-k400-diving48',
            ignore_mismatched_sizes=True
        )
        self.model.classifier = torch.nn.Linear(self.model.classifier.in_features, 48)  # 48 output classes
        self.model.eval()
        
    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        data args:
            inputs (:obj: `str`): base64 encoded video data
            date (:obj: `str`)
        Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """

        inputs = data.get("inputs")
        videos = read_video(inputs)
        with torch.no_grad():
            outputs = self.model(videos)
        logits = outputs.logits
        _, predicted = torch.max(logits, 1)
        return predicted.tolist()
        
        # inputs = data.get("inputs")
        # if not inputs:
        #     return {"error": "No video input provided"}

        # # 비디오 파일 경로
        # video_path = inputs.get("video_path")
        # if not video_path or not os.path.exists(video_path):
        #     return {"error": "Invalid or missing video file"}

        # return {"predicted_class": 1}