|
import numpy as np |
|
import torch |
|
from torchvision import transforms |
|
import av |
|
import logging |
|
from ftplib import FTP |
|
|
|
|
|
logging.basicConfig(filename='/mnt/data/uploads/logfile-video.log', level=logging.INFO) |
|
|
|
def get_video_file(file_path, ftp_password): |
|
|
|
ftp_server = "121.136.96.223" |
|
ftp_port = 21 |
|
ftp_user = "donghuna_ftp" |
|
|
|
folder_path = "web/donghuna.com/inference-endpoints/dive-sequence-classification/" |
|
|
|
|
|
ftp = FTP() |
|
ftp.connect(ftp_server, ftp_port) |
|
ftp.login(user=ftp_user, passwd=ftp_password) |
|
ftp.set_pasv(True) |
|
|
|
local_path = "test.mp4" |
|
|
|
with open(local_path, 'wb') as local_file: |
|
ftp.retrbinary(f'RETR {folder_path}{file_path}', local_file.write) |
|
|
|
|
|
def read_video(file_path, num_frames=24, target_size=(224, 224)): |
|
get_video_file(file_path, ftp_password) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sample_frames(frames, num_frames): |
|
total_frames = len(frames) |
|
if total_frames <= num_frames: |
|
if total_frames < num_frames: |
|
padding = [np.zeros_like(frames[0]) for _ in range(num_frames - total_frames)] |
|
frames.extend(padding) |
|
else: |
|
indices = np.linspace(0, total_frames - 1, num=num_frames, dtype=int) |
|
frames = [frames[i] for i in indices] |
|
return np.array(frames) |
|
|
|
def preprocess_frames(frames, target_size): |
|
transform = transforms.Compose([ |
|
transforms.ToPILImage(), |
|
transforms.Resize(target_size), |
|
transforms.ToTensor() |
|
]) |
|
processed_frames = [transform(frame) for frame in frames] |
|
return torch.stack(processed_frames).permute(1, 0, 2, 3).numpy() |
|
|