File size: 3,837 Bytes
2051338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-base-en
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-base-en

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1212
- Wer: 3.6561

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.1587        | 0.3676  | 100  | 0.1626          | 7.1105 |
| 0.1464        | 0.7353  | 200  | 0.1325          | 5.7486 |
| 0.0699        | 1.1029  | 300  | 0.1217          | 4.3894 |
| 0.0714        | 1.4706  | 400  | 0.1147          | 4.2034 |
| 0.0529        | 1.8382  | 500  | 0.1117          | 4.0358 |
| 0.0315        | 2.2059  | 600  | 0.1087          | 3.8865 |
| 0.0305        | 2.5735  | 700  | 0.1077          | 3.8787 |
| 0.0307        | 2.9412  | 800  | 0.1031          | 3.5958 |
| 0.0137        | 3.3088  | 900  | 0.1075          | 3.5304 |
| 0.0125        | 3.6765  | 1000 | 0.1065          | 3.4858 |
| 0.0103        | 4.0441  | 1100 | 0.1069          | 3.5592 |
| 0.0066        | 4.4118  | 1200 | 0.1093          | 3.5539 |
| 0.0063        | 4.7794  | 1300 | 0.1072          | 4.0332 |
| 0.0043        | 5.1471  | 1400 | 0.1095          | 3.5880 |
| 0.0045        | 5.5147  | 1500 | 0.1109          | 5.1672 |
| 0.0048        | 5.8824  | 1600 | 0.1114          | 3.5723 |
| 0.0035        | 6.25    | 1700 | 0.1128          | 3.5775 |
| 0.0033        | 6.6176  | 1800 | 0.1117          | 4.6591 |
| 0.0032        | 6.9853  | 1900 | 0.1132          | 3.5435 |
| 0.0032        | 7.3529  | 2000 | 0.1138          | 3.5801 |
| 0.0026        | 7.7206  | 2100 | 0.1151          | 3.6246 |
| 0.0024        | 8.0882  | 2200 | 0.1155          | 3.6639 |
| 0.0023        | 8.4559  | 2300 | 0.1167          | 3.6613 |
| 0.0022        | 8.8235  | 2400 | 0.1176          | 3.6299 |
| 0.0019        | 9.1912  | 2500 | 0.1177          | 3.5592 |
| 0.0018        | 9.5588  | 2600 | 0.1169          | 3.5827 |
| 0.0018        | 9.9265  | 2700 | 0.1175          | 3.5985 |
| 0.0016        | 10.2941 | 2800 | 0.1183          | 3.6142 |
| 0.0017        | 10.6618 | 2900 | 0.1190          | 3.6246 |
| 0.0016        | 11.0294 | 3000 | 0.1184          | 3.6954 |
| 0.0016        | 11.3971 | 3100 | 0.1192          | 3.6194 |
| 0.0015        | 11.7647 | 3200 | 0.1197          | 3.6508 |
| 0.0014        | 12.1324 | 3300 | 0.1202          | 3.6142 |
| 0.0013        | 12.5    | 3400 | 0.1202          | 3.6194 |
| 0.0014        | 12.8676 | 3500 | 0.1204          | 3.6561 |
| 0.0013        | 13.2353 | 3600 | 0.1208          | 3.6351 |
| 0.0014        | 13.6029 | 3700 | 0.1209          | 3.6561 |
| 0.0013        | 13.9706 | 3800 | 0.1211          | 3.6456 |
| 0.0014        | 14.3382 | 3900 | 0.1212          | 3.6613 |
| 0.0013        | 14.7059 | 4000 | 0.1212          | 3.6561 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1