File size: 2,841 Bytes
14fffed ab9cdbf 0e6dbee 14fffed ab9cdbf 14fffed ab9cdbf 14fffed 5cacb1f 14fffed 51a9fa3 14fffed 51a9fa3 14fffed 51a9fa3 14fffed ab9cdbf 5cacb1f ab9cdbf 14fffed 51a9fa3 14fffed 51a9fa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
model-index:
- name: whisper-base-zh
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-base-zh
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3717
- Cer: 15.8574
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.5054 | 0.25 | 100 | 0.4976 | 21.1112 |
| 0.4526 | 0.5 | 200 | 0.4336 | 18.1724 |
| 0.4131 | 0.75 | 300 | 0.4105 | 20.9577 |
| 0.3772 | 1.0 | 400 | 0.3952 | 17.7166 |
| 0.297 | 1.25 | 500 | 0.3872 | 17.8054 |
| 0.2837 | 1.5 | 600 | 0.3798 | 18.3740 |
| 0.2801 | 1.75 | 700 | 0.3747 | 15.5887 |
| 0.2776 | 2.0 | 800 | 0.3677 | 16.4739 |
| 0.1981 | 2.25 | 900 | 0.3697 | 17.1169 |
| 0.2198 | 2.5 | 1000 | 0.3662 | 16.7474 |
| 0.2133 | 2.75 | 1100 | 0.3624 | 15.8334 |
| 0.2015 | 3.0 | 1200 | 0.3597 | 15.9798 |
| 0.1597 | 3.25 | 1300 | 0.3633 | 15.7902 |
| 0.1796 | 3.5 | 1400 | 0.3611 | 16.7834 |
| 0.145 | 3.75 | 1500 | 0.3607 | 16.6947 |
| 0.1581 | 4.0 | 1600 | 0.3602 | 16.2005 |
| 0.1235 | 4.25 | 1700 | 0.3639 | 14.9530 |
| 0.1118 | 4.5 | 1800 | 0.3674 | 15.3344 |
| 0.1266 | 4.75 | 1900 | 0.3654 | 15.3728 |
| 0.1214 | 5.0 | 2000 | 0.3644 | 15.3248 |
| 0.0911 | 5.25 | 2100 | 0.3678 | 15.8238 |
| 0.0969 | 5.5 | 2200 | 0.3703 | 15.8046 |
| 0.0956 | 5.75 | 2300 | 0.3717 | 15.8574 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|