File size: 3,079 Bytes
f8974bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3549e1e
f8974bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3549e1e
f8974bd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: other
tags:
- generated_from_keras_callback
model-index:
- name: dousey/scene_segmentation
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# dousey/scene_segmentation

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: nan
- Validation Loss: nan
- Validation Mean Iou: 0.0217
- Validation Mean Accuracy: 0.5
- Validation Overall Accuracy: 0.2545
- Validation Accuracy Background: 1.0
- Validation Accuracy Bleuet: 0.0
- Validation Accuracy Comptonie: nan
- Validation Accuracy Kalmia: nan
- Validation Iou Background: 0.0433
- Validation Iou Bleuet: 0.0
- Validation Iou Comptonie: nan
- Validation Iou Kalmia: nan
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 6e-05, 'decay_steps': 76500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Background | Validation Accuracy Bleuet | Validation Accuracy Comptonie | Validation Accuracy Kalmia | Validation Iou Background | Validation Iou Bleuet | Validation Iou Comptonie | Validation Iou Kalmia | Epoch |
|:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:-----------------------------:|:--------------------------:|:-------------------------:|:---------------------:|:------------------------:|:---------------------:|:-----:|
| nan        | nan             | 0.0217              | 0.5                      | 0.2545                      | 1.0                            | 0.0                        | nan                           | nan                        | 0.0433                    | 0.0                   | nan                      | nan                   | 0     |
| nan        | nan             | 0.0217              | 0.5                      | 0.2545                      | 1.0                            | 0.0                        | nan                           | nan                        | 0.0433                    | 0.0                   | nan                      | nan                   | 1     |


### Framework versions

- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2