--- tags: - generated_from_trainer datasets: - soda-clip-loader model-index: - name: soda-clip-finetuned results: [] --- # soda-clip-finetuned This model was trained from scratch on the soda-clip-loader dataset. It achieves the following results on the evaluation set: - Loss: 4.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.8557 | 0.15 | 100 | 4.8520 | | 4.852 | 0.29 | 200 | 4.8520 | | 4.8526 | 0.44 | 300 | 4.8522 | | 4.8521 | 0.59 | 400 | 4.8520 | | 4.852 | 0.74 | 500 | 4.8520 | | 4.852 | 0.88 | 600 | 4.8520 | | 4.852 | 1.03 | 700 | 4.8520 | | 4.8519 | 1.18 | 800 | 4.8542 | | 4.8522 | 1.33 | 900 | 4.8520 | | 4.852 | 1.47 | 1000 | 4.8520 | | 4.852 | 1.62 | 1100 | 4.8520 | | 4.852 | 1.77 | 1200 | 4.8520 | | 4.852 | 1.92 | 1300 | 4.8520 | | 4.852 | 2.06 | 1400 | 4.8520 | | 4.852 | 2.21 | 1500 | 4.8520 | | 4.852 | 2.36 | 1600 | 4.8520 | | 4.852 | 2.51 | 1700 | 4.8520 | | 4.852 | 2.65 | 1800 | 4.8520 | | 4.852 | 2.8 | 1900 | 4.8520 | | 4.852 | 2.95 | 2000 | 4.8522 | | 4.852 | 3.1 | 2100 | 4.8521 | | 4.852 | 3.24 | 2200 | 4.8521 | | 4.8519 | 3.39 | 2300 | 4.8523 | | 4.8521 | 3.54 | 2400 | 4.8521 | | 4.852 | 3.69 | 2500 | 4.8521 | | 4.8517 | 3.83 | 2600 | 4.8521 | | 4.852 | 3.98 | 2700 | 4.8520 | | 4.852 | 4.13 | 2800 | 4.8520 | | 4.852 | 4.28 | 2900 | 4.8520 | | 4.852 | 4.42 | 3000 | 4.8520 | | 4.8519 | 4.57 | 3100 | 4.8523 | | 4.8515 | 4.72 | 3200 | 4.8528 | | 4.851 | 4.87 | 3300 | 4.8565 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2