dragovoid commited on
Commit
aff7c48
1 Parent(s): 2e0e5c0

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 246.92 +/- 19.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae51d412170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae51d412200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae51d412290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae51d412320>", "_build": "<function ActorCriticPolicy._build at 0x7ae51d4123b0>", "forward": "<function ActorCriticPolicy.forward at 0x7ae51d412440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae51d4124d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae51d412560>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae51d4125f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae51d412680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae51d412710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae51d4127a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae4bf120e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732385326798496070, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3XLD4cNMY+Pl84vDrXgb4EamE90leAuwAAAAAAAAAAQCnYPaEzDD5yNu29EMcnvol1Lrx41+a8AAAAAAAAAADNvgw8lzRcP90ti71nEpa+ApcQvXnGR70AAAAAAAAAAMCWOD6Prh+6nB+fuo8GhrYlA4o7iuu4OQAAgD8AAIA/wPfXPWzd47tGmX07LBtoO0BkVT3rw2e8AACAPwAAgD+gqGA+cnC3Po7KIb42FZC+Bx6Wu8+ojL0AAAAAAAAAAM1dpz32EEq6CAdmu0JQezhFzvw6hRQAOgAAgD8AAAAAs2qMPSmgZLocSII6IlmNNA/uzrpb+Zi5AACAPwAAgD/aiZE9w9kluiEEJDiRZjwyMNbWuqbiQLcAAIA/AACAPwDidj3Wh2o9FZBwvaQMe77101c80iuIPAAAAAAAAAAAAM6gvWo0gT/FHmm9SQ6nvjEE1L0xuEu7AAAAAAAAAAANAck9j05bukhGrDbv1naw3fsrOghyyLUAAAAAAACAP5p2X70P1XK8WAiyvGC9+jw1Mam9jc6MvAAAgD8AAIA/U/VvvjnNcD5t9l0+pIRqvgk+vrz7Hrk9AAAAAAAAAABz9fE9KZBxusp8s7olhZi2SW+cOvPN5bYAAIA/AACAP8BG0T3Rm/E+A8a2PIqin77npn483rJ5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGSXXAdn02MAWyUTegDjAF0lEdAo1OM8s+V1XV9lChoBkdAcjLWSlnAZmgHTfIBaAhHQKNU0PGQ0XR1fZQoaAZHQHB0tXxOLzhoB00tAWgIR0CjVRuWBz3idX2UKGgGR0BxercUM5OraAdNPwFoCEdAo1YqwfQrtnV9lChoBkdAcbPpSaVlgGgHTaADaAhHQKNWfK9wm3R1fZQoaAZHQHEIE5MlC1JoB01FAWgIR0CjVu7RfF72dX2UKGgGR0BixpAnlXA/aAdN6ANoCEdAo1fmLWI42nV9lChoBkdAcYD/nW8RMGgHTUADaAhHQKNY+gwoLG91fZQoaAZHQFDIoH9m6GxoB0vhaAhHQKNZk0fHPu51fZQoaAZHQHB0muoxYaJoB01PAWgIR0CjWba+nIhhdX2UKGgGR0BhvWLaVUuMaAdN6ANoCEdAo1om2Xsw+XV9lChoBkdAcYH65oXbd2gHTTwBaAhHQKNbGfW+XZ51fZQoaAZHQGXsBWHUMG5oB03oA2gIR0CjW0DN6gM+dX2UKGgGR0Bt/1cnmaH9aAdN2QJoCEdAo1yJJI1+AnV9lChoBkdAcqgzv7WNFWgHTWwCaAhHQKNeHpYcNpd1fZQoaAZHQHDEiHmA9V5oB02EAmgIR0CjX6xYRujzdX2UKGgGR0ByUahYeT3ZaAdNowJoCEdAo2HiwD/2kHV9lChoBkdAck7r6+FlCmgHTUcBaAhHQKNis2UB4lh1fZQoaAZHQGRs8QI2OyVoB03oA2gIR0Cjbj+Yc/+sdX2UKGgGR0BwDV45cTrWaAdNXgFoCEdAo28k/nnuA3V9lChoBkdAcL2xnFo+OmgHTTACaAhHQKNwmhVU+9t1fZQoaAZHQGu7e1SflIVoB02xA2gIR0CjcKX5eqrBdX2UKGgGR0A6+aP0Zm7KaAdL5mgIR0CjcZ8hcJMQdX2UKGgGR0BshWenQ6ZIaAdNCQJoCEdAo3GlId2gWnV9lChoBkdAcZbJmukk8mgHTYcBaAhHQKNxyiyprDZ1fZQoaAZHQG4ymrKeTV5oB01uAWgIR0CjcpHnEETydX2UKGgGR0BvuakEcKgJaAdNtwJoCEdAo3LKbx3FDXV9lChoBkdAcWCn2IwdsGgHTZYCaAhHQKNzRtLteD51fZQoaAZHQG+Ncnuy/sVoB01uA2gIR0Cjc4SK3uuzdX2UKGgGR0A+Kx3V09yMaAdL6GgIR0CjdAC/O+qSdX2UKGgGR0Bwcul0o0AMaAdNTQFoCEdAo3QTy1/lQ3V9lChoBkdAb7IAuIyj6GgHTRkDaAhHQKN1MzEaVD91fZQoaAZHQFDihOgxrSFoB0vKaAhHQKN1WYBvJil1fZQoaAZHQGMHMFMZgohoB03oA2gIR0CjdguanaWYdX2UKGgGR0BgZlEuxrzoaAdN6ANoCEdAo3Z/v+fh/HV9lChoBkdAbQacOLBKtmgHTUIBaAhHQKN20/L1VYJ1fZQoaAZHQGLwNW2gFotoB03oA2gIR0Cjd3wMhHLBdX2UKGgGR0BxVM0+C9RKaAdN2QFoCEdAo3f0nXumanV9lChoBkdAcAUnwXqJM2gHTWIBaAhHQKN4VYp2ECh1fZQoaAZHQHFq9cfNiYtoB01NAWgIR0CjeNAQg9vCdX2UKGgGR0BxMBnUUfxMaAdNaQFoCEdAo3mSIk7fYXV9lChoBkdAcMS+Vkc0cmgHTVwBaAhHQKN51pbD/ER1fZQoaAZHQExTZB9kSVZoB0vzaAhHQKN55UBnzxx1fZQoaAZHQHHAMTakAPxoB01WAWgIR0Cjeng7YChfdX2UKGgGR0BAnrdWQwK0aAdL72gIR0CjeppKraM8dX2UKGgGR0BycQqQRwqBaAdNFAJoCEdAo3rStaIN3HV9lChoBkdAOBLEcbR4QmgHS91oCEdAo3uRN7BwdnV9lChoBkdAcNKskpqh12gHTUkBaAhHQKN7lky1uzh1fZQoaAZHQHJ1uA3DNyJoB00rAWgIR0CjfAcUM5OrdX2UKGgGR0ByytL127nQaAdNMAFoCEdAo3xlZ3cHnnV9lChoBkdAb7L3pwCKaWgHTewBaAhHQKN8lF1B+nZ1fZQoaAZHQHCdc274BWBoB01RAWgIR0CjfnSnDR+jdX2UKGgGR0Bts7gZTAFgaAdNPAFoCEdAo38cg8r7O3V9lChoBkdAcI4wLmZE2GgHTdoCaAhHQKOANc1wYLt1fZQoaAZHQEUWzabnX/ZoB0vsaAhHQKOB8aqCHyp1fZQoaAZHQHJWOZgG8mNoB01wAWgIR0Cjgi6d+XqrdX2UKGgGR0BxrUw+MZP3aAdNgwFoCEdAo4LDtb9qDnV9lChoBkdAchhEU0vXb2gHTZgBaAhHQKOC2fJV81J1fZQoaAZHQG8fJ7CzkZJoB01kAWgIR0Cjgu7edkJ8dX2UKGgGR0Byi9GI9C/oaAdNdAFoCEdAo4zmZXuE3HV9lChoBkdAcNFSG8EmpmgHTTgBaAhHQKOM5uIhyKh1fZQoaAZHQG1TxFI/Z/VoB00wAmgIR0CjjRV4X40udX2UKGgGR0BxtkTh5xBFaAdNowFoCEdAo42wFTvRZ3V9lChoBkdAcVbapgkTpWgHTSQCaAhHQKOO59ycTal1fZQoaAZHQG8D1zIV/MJoB00FAmgIR0CjkIv+4smOdX2UKGgGR0BwRLhl18suaAdNMgFoCEdAo5DFt/FzdXV9lChoBkdAZGsUUwi7kGgHTegDaAhHQKORQTVUdaN1fZQoaAZHQHGAFo11nuloB01aAWgIR0CjkW+6RQrMdX2UKGgGR0BwpfMMZxaQaAdNPAFoCEdAo5GDZzxPPHV9lChoBkdAbtKDWbwz+GgHTUQBaAhHQKORlnbqQil1fZQoaAZHQG6KZZSvTw5oB01GAWgIR0CjkcEhq0tzdX2UKGgGR0Bx/qgqVhTgaAdN6wFoCEdAo5HO7FsHjnV9lChoBkdAcVvN9H+ZPWgHTbMCaAhHQKOSEyVObiJ1fZQoaAZHQG1yhib2Dg9oB01FAWgIR0Cjk7DrJKaodX2UKGgGR0BvzQwVTJhfaAdNpAFoCEdAo5Squ8scyXV9lChoBkdAcaykI5YHPmgHTToBaAhHQKOU07U5MlF1fZQoaAZHQHCPywGGEf1oB025AWgIR0CjlRaVMVUNdX2UKGgGR0BNNBqbjLjhaAdL3mgIR0CjlUBClabGdX2UKGgGR0BwAdMh5gPVaAdNzgFoCEdAo5Whng5zYHV9lChoBkdARCKEpRXOnmgHS+poCEdAo5XmrELpinV9lChoBkdAbJ3kfcN6PmgHTTcBaAhHQKOWJ40Mw111fZQoaAZHQHCn+WfK6nRoB01BAWgIR0CjloADaGpNdX2UKGgGR0Bwu9FOO802aAdNOAFoCEdAo5cWM4tHx3V9lChoBkdAbgnUDuBtlGgHTVMBaAhHQKOXkSJTER91fZQoaAZHQHHwVQZXMhZoB01SAWgIR0Cjl7Sy2QXAdX2UKGgGR0AzFKgZjx0/aAdL8WgIR0CjmEJtaY/ndX2UKGgGR0AnLsiSq2jPaAdL5GgIR0CjmTkfLcKxdX2UKGgGR0Bxg9bSqlxfaAdNggFoCEdAo5lflhgE2nV9lChoBkdAUGygZjx0+2gHS9hoCEdAo5l2ALApKHV9lChoBkdAclYkDZDiO2gHTZ8BaAhHQKOZm0sOG0x1fZQoaAZHQGxLwarFOwhoB00eAWgIR0Cjmtl4s3AEdX2UKGgGR0ByFAEgW8AaaAdNRgFoCEdAo5tEsxwhn3V9lChoBkdAZwowWWQfZGgHTegDaAhHQKOcVtcfNiZ1fZQoaAZHQG4Me0Xxe9loB01DAWgIR0CjnGS619fDdX2UKGgGR0BxrFXiiqQzaAdNKAFoCEdAo5zt1uBMBnV9lChoBkdAZP58+iaiK2gHTegDaAhHQKOdHN9H+ZR1fZQoaAZHQHHoIZAIIGBoB01jAWgIR0CjnUT9S/CZdX2UKGgGR0BsGUqWkaddaAdNEAFoCEdAo51v8yeqaXV9lChoBkdAcLVGsV+I/WgHTTsBaAhHQKOenzDn/1h1fZQoaAZHQG/famwaBI5oB02uAWgIR0CjnsNCRfWudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4295b4491507077055df5f9fdf7c9c191b98714f1083dc93f782750df1ac2ff
3
+ size 148004
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae51d412170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae51d412200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae51d412290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae51d412320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ae51d4123b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ae51d412440>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae51d4124d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae51d412560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ae51d4125f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae51d412680>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae51d412710>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae51d4127a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ae4bf120e40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1732385326798496070,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3XLD4cNMY+Pl84vDrXgb4EamE90leAuwAAAAAAAAAAQCnYPaEzDD5yNu29EMcnvol1Lrx41+a8AAAAAAAAAADNvgw8lzRcP90ti71nEpa+ApcQvXnGR70AAAAAAAAAAMCWOD6Prh+6nB+fuo8GhrYlA4o7iuu4OQAAgD8AAIA/wPfXPWzd47tGmX07LBtoO0BkVT3rw2e8AACAPwAAgD+gqGA+cnC3Po7KIb42FZC+Bx6Wu8+ojL0AAAAAAAAAAM1dpz32EEq6CAdmu0JQezhFzvw6hRQAOgAAgD8AAAAAs2qMPSmgZLocSII6IlmNNA/uzrpb+Zi5AACAPwAAgD/aiZE9w9kluiEEJDiRZjwyMNbWuqbiQLcAAIA/AACAPwDidj3Wh2o9FZBwvaQMe77101c80iuIPAAAAAAAAAAAAM6gvWo0gT/FHmm9SQ6nvjEE1L0xuEu7AAAAAAAAAAANAck9j05bukhGrDbv1naw3fsrOghyyLUAAAAAAACAP5p2X70P1XK8WAiyvGC9+jw1Mam9jc6MvAAAgD8AAIA/U/VvvjnNcD5t9l0+pIRqvgk+vrz7Hrk9AAAAAAAAAABz9fE9KZBxusp8s7olhZi2SW+cOvPN5bYAAIA/AACAP8BG0T3Rm/E+A8a2PIqin77npn483rJ5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGSXXAdn02MAWyUTegDjAF0lEdAo1OM8s+V1XV9lChoBkdAcjLWSlnAZmgHTfIBaAhHQKNU0PGQ0XR1fZQoaAZHQHB0tXxOLzhoB00tAWgIR0CjVRuWBz3idX2UKGgGR0BxercUM5OraAdNPwFoCEdAo1YqwfQrtnV9lChoBkdAcbPpSaVlgGgHTaADaAhHQKNWfK9wm3R1fZQoaAZHQHEIE5MlC1JoB01FAWgIR0CjVu7RfF72dX2UKGgGR0BixpAnlXA/aAdN6ANoCEdAo1fmLWI42nV9lChoBkdAcYD/nW8RMGgHTUADaAhHQKNY+gwoLG91fZQoaAZHQFDIoH9m6GxoB0vhaAhHQKNZk0fHPu51fZQoaAZHQHB0muoxYaJoB01PAWgIR0CjWba+nIhhdX2UKGgGR0BhvWLaVUuMaAdN6ANoCEdAo1om2Xsw+XV9lChoBkdAcYH65oXbd2gHTTwBaAhHQKNbGfW+XZ51fZQoaAZHQGXsBWHUMG5oB03oA2gIR0CjW0DN6gM+dX2UKGgGR0Bt/1cnmaH9aAdN2QJoCEdAo1yJJI1+AnV9lChoBkdAcqgzv7WNFWgHTWwCaAhHQKNeHpYcNpd1fZQoaAZHQHDEiHmA9V5oB02EAmgIR0CjX6xYRujzdX2UKGgGR0ByUahYeT3ZaAdNowJoCEdAo2HiwD/2kHV9lChoBkdAck7r6+FlCmgHTUcBaAhHQKNis2UB4lh1fZQoaAZHQGRs8QI2OyVoB03oA2gIR0Cjbj+Yc/+sdX2UKGgGR0BwDV45cTrWaAdNXgFoCEdAo28k/nnuA3V9lChoBkdAcL2xnFo+OmgHTTACaAhHQKNwmhVU+9t1fZQoaAZHQGu7e1SflIVoB02xA2gIR0CjcKX5eqrBdX2UKGgGR0A6+aP0Zm7KaAdL5mgIR0CjcZ8hcJMQdX2UKGgGR0BshWenQ6ZIaAdNCQJoCEdAo3GlId2gWnV9lChoBkdAcZbJmukk8mgHTYcBaAhHQKNxyiyprDZ1fZQoaAZHQG4ymrKeTV5oB01uAWgIR0CjcpHnEETydX2UKGgGR0BvuakEcKgJaAdNtwJoCEdAo3LKbx3FDXV9lChoBkdAcWCn2IwdsGgHTZYCaAhHQKNzRtLteD51fZQoaAZHQG+Ncnuy/sVoB01uA2gIR0Cjc4SK3uuzdX2UKGgGR0A+Kx3V09yMaAdL6GgIR0CjdAC/O+qSdX2UKGgGR0Bwcul0o0AMaAdNTQFoCEdAo3QTy1/lQ3V9lChoBkdAb7IAuIyj6GgHTRkDaAhHQKN1MzEaVD91fZQoaAZHQFDihOgxrSFoB0vKaAhHQKN1WYBvJil1fZQoaAZHQGMHMFMZgohoB03oA2gIR0CjdguanaWYdX2UKGgGR0BgZlEuxrzoaAdN6ANoCEdAo3Z/v+fh/HV9lChoBkdAbQacOLBKtmgHTUIBaAhHQKN20/L1VYJ1fZQoaAZHQGLwNW2gFotoB03oA2gIR0Cjd3wMhHLBdX2UKGgGR0BxVM0+C9RKaAdN2QFoCEdAo3f0nXumanV9lChoBkdAcAUnwXqJM2gHTWIBaAhHQKN4VYp2ECh1fZQoaAZHQHFq9cfNiYtoB01NAWgIR0CjeNAQg9vCdX2UKGgGR0BxMBnUUfxMaAdNaQFoCEdAo3mSIk7fYXV9lChoBkdAcMS+Vkc0cmgHTVwBaAhHQKN51pbD/ER1fZQoaAZHQExTZB9kSVZoB0vzaAhHQKN55UBnzxx1fZQoaAZHQHHAMTakAPxoB01WAWgIR0Cjeng7YChfdX2UKGgGR0BAnrdWQwK0aAdL72gIR0CjeppKraM8dX2UKGgGR0BycQqQRwqBaAdNFAJoCEdAo3rStaIN3HV9lChoBkdAOBLEcbR4QmgHS91oCEdAo3uRN7BwdnV9lChoBkdAcNKskpqh12gHTUkBaAhHQKN7lky1uzh1fZQoaAZHQHJ1uA3DNyJoB00rAWgIR0CjfAcUM5OrdX2UKGgGR0ByytL127nQaAdNMAFoCEdAo3xlZ3cHnnV9lChoBkdAb7L3pwCKaWgHTewBaAhHQKN8lF1B+nZ1fZQoaAZHQHCdc274BWBoB01RAWgIR0CjfnSnDR+jdX2UKGgGR0Bts7gZTAFgaAdNPAFoCEdAo38cg8r7O3V9lChoBkdAcI4wLmZE2GgHTdoCaAhHQKOANc1wYLt1fZQoaAZHQEUWzabnX/ZoB0vsaAhHQKOB8aqCHyp1fZQoaAZHQHJWOZgG8mNoB01wAWgIR0Cjgi6d+XqrdX2UKGgGR0BxrUw+MZP3aAdNgwFoCEdAo4LDtb9qDnV9lChoBkdAchhEU0vXb2gHTZgBaAhHQKOC2fJV81J1fZQoaAZHQG8fJ7CzkZJoB01kAWgIR0Cjgu7edkJ8dX2UKGgGR0Byi9GI9C/oaAdNdAFoCEdAo4zmZXuE3HV9lChoBkdAcNFSG8EmpmgHTTgBaAhHQKOM5uIhyKh1fZQoaAZHQG1TxFI/Z/VoB00wAmgIR0CjjRV4X40udX2UKGgGR0BxtkTh5xBFaAdNowFoCEdAo42wFTvRZ3V9lChoBkdAcVbapgkTpWgHTSQCaAhHQKOO59ycTal1fZQoaAZHQG8D1zIV/MJoB00FAmgIR0CjkIv+4smOdX2UKGgGR0BwRLhl18suaAdNMgFoCEdAo5DFt/FzdXV9lChoBkdAZGsUUwi7kGgHTegDaAhHQKORQTVUdaN1fZQoaAZHQHGAFo11nuloB01aAWgIR0CjkW+6RQrMdX2UKGgGR0BwpfMMZxaQaAdNPAFoCEdAo5GDZzxPPHV9lChoBkdAbtKDWbwz+GgHTUQBaAhHQKORlnbqQil1fZQoaAZHQG6KZZSvTw5oB01GAWgIR0CjkcEhq0tzdX2UKGgGR0Bx/qgqVhTgaAdN6wFoCEdAo5HO7FsHjnV9lChoBkdAcVvN9H+ZPWgHTbMCaAhHQKOSEyVObiJ1fZQoaAZHQG1yhib2Dg9oB01FAWgIR0Cjk7DrJKaodX2UKGgGR0BvzQwVTJhfaAdNpAFoCEdAo5Squ8scyXV9lChoBkdAcaykI5YHPmgHTToBaAhHQKOU07U5MlF1fZQoaAZHQHCPywGGEf1oB025AWgIR0CjlRaVMVUNdX2UKGgGR0BNNBqbjLjhaAdL3mgIR0CjlUBClabGdX2UKGgGR0BwAdMh5gPVaAdNzgFoCEdAo5Whng5zYHV9lChoBkdARCKEpRXOnmgHS+poCEdAo5XmrELpinV9lChoBkdAbJ3kfcN6PmgHTTcBaAhHQKOWJ40Mw111fZQoaAZHQHCn+WfK6nRoB01BAWgIR0CjloADaGpNdX2UKGgGR0Bwu9FOO802aAdNOAFoCEdAo5cWM4tHx3V9lChoBkdAbgnUDuBtlGgHTVMBaAhHQKOXkSJTER91fZQoaAZHQHHwVQZXMhZoB01SAWgIR0Cjl7Sy2QXAdX2UKGgGR0AzFKgZjx0/aAdL8WgIR0CjmEJtaY/ndX2UKGgGR0AnLsiSq2jPaAdL5GgIR0CjmTkfLcKxdX2UKGgGR0Bxg9bSqlxfaAdNggFoCEdAo5lflhgE2nV9lChoBkdAUGygZjx0+2gHS9hoCEdAo5l2ALApKHV9lChoBkdAclYkDZDiO2gHTZ8BaAhHQKOZm0sOG0x1fZQoaAZHQGxLwarFOwhoB00eAWgIR0Cjmtl4s3AEdX2UKGgGR0ByFAEgW8AaaAdNRgFoCEdAo5tEsxwhn3V9lChoBkdAZwowWWQfZGgHTegDaAhHQKOcVtcfNiZ1fZQoaAZHQG4Me0Xxe9loB01DAWgIR0CjnGS619fDdX2UKGgGR0BxrFXiiqQzaAdNKAFoCEdAo5zt1uBMBnV9lChoBkdAZP58+iaiK2gHTegDaAhHQKOdHN9H+ZR1fZQoaAZHQHHoIZAIIGBoB01jAWgIR0CjnUT9S/CZdX2UKGgGR0BsGUqWkaddaAdNEAFoCEdAo51v8yeqaXV9lChoBkdAcLVGsV+I/WgHTTsBaAhHQKOenzDn/1h1fZQoaAZHQG/famwaBI5oB02uAWgIR0CjnsNCRfWudWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98d56e43773f6abaeee85402157c8b66cbbda085fe538870ea48a421821ffd58
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a95971ae111a03489175fb19501a938d472976a72e52db6233b2631ff0bfb218
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (184 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 246.91971255340363, "std_reward": 19.979500452801044, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-23T18:39:19.155445"}