dsakerkwq commited on
Commit
454f70e
1 Parent(s): c6dd733

End of training

Browse files
Files changed (2) hide show
  1. README.md +167 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: jhflow/mistral7b-lora-multi-turn-v2
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 605e3ddd-9f86-4185-b5ec-c3499a067672
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: jhflow/mistral7b-lora-multi-turn-v2
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 4
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - 197f3ec1180179d9_train_data.json
30
+ ds_type: json
31
+ field: texte
32
+ num_proc: 4
33
+ path: /workspace/input_data/197f3ec1180179d9_train_data.json
34
+ streaming: true
35
+ type: completion
36
+ debug: null
37
+ deepspeed: null
38
+ device_map: balanced
39
+ do_eval: true
40
+ early_stopping_patience: 1
41
+ eval_batch_size: 1
42
+ eval_sample_packing: false
43
+ eval_steps: 25
44
+ evaluation_strategy: steps
45
+ flash_attention: false
46
+ fp16: null
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 16
50
+ gradient_checkpointing: true
51
+ group_by_length: true
52
+ hub_model_id: dsakerkwq/605e3ddd-9f86-4185-b5ec-c3499a067672
53
+ hub_strategy: checkpoint
54
+ hub_token: null
55
+ learning_rate: 0.0001
56
+ load_in_4bit: false
57
+ load_in_8bit: false
58
+ local_rank: null
59
+ logging_steps: 1
60
+ lora_alpha: 64
61
+ lora_dropout: 0.05
62
+ lora_fan_in_fan_out: null
63
+ lora_model_dir: null
64
+ lora_r: 32
65
+ lora_target_linear: true
66
+ lora_target_modules:
67
+ - q_proj
68
+ - v_proj
69
+ lr_scheduler: cosine
70
+ max_grad_norm: 1.0
71
+ max_memory:
72
+ 0: 75GB
73
+ 1: 75GB
74
+ 2: 75GB
75
+ 3: 75GB
76
+ max_steps: 50
77
+ micro_batch_size: 2
78
+ mixed_precision: bf16
79
+ mlflow_experiment_name: /tmp/197f3ec1180179d9_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_epochs: 3
82
+ optim_args:
83
+ adam_beta1: 0.9
84
+ adam_beta2: 0.95
85
+ adam_epsilon: 1e-5
86
+ optimizer: adamw_torch
87
+ output_dir: miner_id_24
88
+ pad_to_sequence_len: true
89
+ resume_from_checkpoint: null
90
+ s2_attention: null
91
+ sample_packing: false
92
+ save_steps: 25
93
+ save_strategy: steps
94
+ sequence_len: 2048
95
+ strict: false
96
+ tf32: false
97
+ tokenizer_type: AutoTokenizer
98
+ torch_compile: false
99
+ train_on_inputs: false
100
+ trust_remote_code: true
101
+ val_set_size: 50
102
+ wandb_entity: null
103
+ wandb_mode: online
104
+ wandb_name: 605e3ddd-9f86-4185-b5ec-c3499a067672
105
+ wandb_project: Public_TuningSN
106
+ wandb_runid: 605e3ddd-9f86-4185-b5ec-c3499a067672
107
+ warmup_ratio: 0.04
108
+ weight_decay: 0.01
109
+ xformers_attention: null
110
+
111
+ ```
112
+
113
+ </details><br>
114
+
115
+ # 605e3ddd-9f86-4185-b5ec-c3499a067672
116
+
117
+ This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset.
118
+ It achieves the following results on the evaluation set:
119
+ - Loss: nan
120
+
121
+ ## Model description
122
+
123
+ More information needed
124
+
125
+ ## Intended uses & limitations
126
+
127
+ More information needed
128
+
129
+ ## Training and evaluation data
130
+
131
+ More information needed
132
+
133
+ ## Training procedure
134
+
135
+ ### Training hyperparameters
136
+
137
+ The following hyperparameters were used during training:
138
+ - learning_rate: 0.0001
139
+ - train_batch_size: 2
140
+ - eval_batch_size: 1
141
+ - seed: 42
142
+ - distributed_type: multi-GPU
143
+ - num_devices: 4
144
+ - gradient_accumulation_steps: 16
145
+ - total_train_batch_size: 128
146
+ - total_eval_batch_size: 4
147
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
148
+ - lr_scheduler_type: cosine
149
+ - lr_scheduler_warmup_steps: 2
150
+ - training_steps: 50
151
+
152
+ ### Training results
153
+
154
+ | Training Loss | Epoch | Step | Validation Loss |
155
+ |:-------------:|:------:|:----:|:---------------:|
156
+ | 27108.3242 | 0.0361 | 1 | nan |
157
+ | 0.0 | 0.9029 | 25 | nan |
158
+ | 0.0 | 1.8194 | 50 | nan |
159
+
160
+
161
+ ### Framework versions
162
+
163
+ - PEFT 0.13.2
164
+ - Transformers 4.46.0
165
+ - Pytorch 2.5.0+cu124
166
+ - Datasets 3.0.1
167
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e1e22a7c24473ae2ce03415b098f515aeed520202a76c93116fabb734bf0b47
3
+ size 335706186