dsakerkwq commited on
Commit
9a1b68e
1 Parent(s): fc1e3f3

End of training

Browse files
Files changed (2) hide show
  1. README.md +175 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 6a3778e7-6b4f-45e5-aa22-7829a22bd52c
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
23
+ bf16: auto
24
+ chat_template: llama3
25
+ cosine_min_lr_ratio: 0.1
26
+ data_processes: 4
27
+ dataset_prepared_path: null
28
+ datasets:
29
+ - data_files:
30
+ - 43bf1e339b897f29_train_data.json
31
+ ds_type: json
32
+ format: custom
33
+ num_proc: 4
34
+ path: /workspace/input_data/43bf1e339b897f29_train_data.json
35
+ streaming: true
36
+ type:
37
+ field_input: student_answer
38
+ field_instruction: question
39
+ field_output: reference_answer
40
+ format: '{instruction} {input}'
41
+ no_input_format: '{instruction}'
42
+ system_format: '{system}'
43
+ system_prompt: ''
44
+ debug: null
45
+ deepspeed: null
46
+ device_map: balanced
47
+ do_eval: true
48
+ early_stopping_patience: 1
49
+ eval_batch_size: 1
50
+ eval_sample_packing: false
51
+ eval_steps: 25
52
+ evaluation_strategy: steps
53
+ flash_attention: false
54
+ fp16: null
55
+ fsdp: null
56
+ fsdp_config: null
57
+ gradient_accumulation_steps: 16
58
+ gradient_checkpointing: true
59
+ group_by_length: true
60
+ hub_model_id: dsakerkwq/6a3778e7-6b4f-45e5-aa22-7829a22bd52c
61
+ hub_strategy: checkpoint
62
+ hub_token: null
63
+ learning_rate: 0.0001
64
+ load_in_4bit: false
65
+ load_in_8bit: false
66
+ local_rank: null
67
+ logging_steps: 1
68
+ lora_alpha: 64
69
+ lora_dropout: 0.05
70
+ lora_fan_in_fan_out: null
71
+ lora_model_dir: null
72
+ lora_r: 32
73
+ lora_target_linear: true
74
+ lora_target_modules:
75
+ - q_proj
76
+ - v_proj
77
+ lr_scheduler: cosine
78
+ max_grad_norm: 1.0
79
+ max_memory:
80
+ 0: 75GB
81
+ 1: 75GB
82
+ 2: 75GB
83
+ 3: 75GB
84
+ max_steps: 50
85
+ micro_batch_size: 2
86
+ mixed_precision: bf16
87
+ mlflow_experiment_name: /tmp/43bf1e339b897f29_train_data.json
88
+ model_type: AutoModelForCausalLM
89
+ num_epochs: 3
90
+ optim_args:
91
+ adam_beta1: 0.9
92
+ adam_beta2: 0.95
93
+ adam_epsilon: 1e-5
94
+ optimizer: adamw_torch
95
+ output_dir: miner_id_24
96
+ pad_to_sequence_len: true
97
+ resume_from_checkpoint: null
98
+ s2_attention: null
99
+ sample_packing: false
100
+ save_steps: 25
101
+ save_strategy: steps
102
+ sequence_len: 2048
103
+ strict: false
104
+ tf32: false
105
+ tokenizer_type: AutoTokenizer
106
+ torch_compile: false
107
+ train_on_inputs: false
108
+ trust_remote_code: true
109
+ val_set_size: 50
110
+ wandb_entity: null
111
+ wandb_mode: online
112
+ wandb_name: 6a3778e7-6b4f-45e5-aa22-7829a22bd52c
113
+ wandb_project: Public_TuningSN
114
+ wandb_runid: 6a3778e7-6b4f-45e5-aa22-7829a22bd52c
115
+ warmup_ratio: 0.04
116
+ weight_decay: 0.01
117
+ xformers_attention: null
118
+
119
+ ```
120
+
121
+ </details><br>
122
+
123
+ # 6a3778e7-6b4f-45e5-aa22-7829a22bd52c
124
+
125
+ This model is a fine-tuned version of [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B) on the None dataset.
126
+ It achieves the following results on the evaluation set:
127
+ - Loss: 0.0699
128
+
129
+ ## Model description
130
+
131
+ More information needed
132
+
133
+ ## Intended uses & limitations
134
+
135
+ More information needed
136
+
137
+ ## Training and evaluation data
138
+
139
+ More information needed
140
+
141
+ ## Training procedure
142
+
143
+ ### Training hyperparameters
144
+
145
+ The following hyperparameters were used during training:
146
+ - learning_rate: 0.0001
147
+ - train_batch_size: 2
148
+ - eval_batch_size: 1
149
+ - seed: 42
150
+ - distributed_type: multi-GPU
151
+ - num_devices: 4
152
+ - gradient_accumulation_steps: 16
153
+ - total_train_batch_size: 128
154
+ - total_eval_batch_size: 4
155
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
156
+ - lr_scheduler_type: cosine
157
+ - lr_scheduler_warmup_steps: 2
158
+ - training_steps: 50
159
+
160
+ ### Training results
161
+
162
+ | Training Loss | Epoch | Step | Validation Loss |
163
+ |:-------------:|:------:|:----:|:---------------:|
164
+ | 2.8904 | 0.0264 | 1 | 4.4969 |
165
+ | 0.2629 | 0.6590 | 25 | 0.2243 |
166
+ | 0.0205 | 1.3410 | 50 | 0.0699 |
167
+
168
+
169
+ ### Framework versions
170
+
171
+ - PEFT 0.13.2
172
+ - Transformers 4.46.0
173
+ - Pytorch 2.5.0+cu124
174
+ - Datasets 3.0.1
175
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3454ac200bd79f1f25d75406470dfad20c365600ced410a2686ae742975fb00e
3
+ size 335706186