---
library_name: peft
base_model: katuni4ka/tiny-random-qwen1.5-moe
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 6e4dd86a-2315-48fe-9734-dc0911e01803
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ba6870088205e3c8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ba6870088205e3c8_train_data.json
type:
field_input: context
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: dsakerkwq/6e4dd86a-2315-48fe-9734-dc0911e01803
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/ba6870088205e3c8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6e4dd86a-2315-48fe-9734-dc0911e01803
wandb_project: Gradients-On-Demand
wandb_runid: 6e4dd86a-2315-48fe-9734-dc0911e01803
warmup_steps: 100
weight_decay: 0.01
xformers_attention: false
```
# 6e4dd86a-2315-48fe-9734-dc0911e01803
This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.9164
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 11.9336 | 0.0002 | 1 | 11.9257 |
| 11.9313 | 0.0006 | 3 | 11.9257 |
| 11.9271 | 0.0013 | 6 | 11.9255 |
| 11.9273 | 0.0019 | 9 | 11.9250 |
| 11.9169 | 0.0026 | 12 | 11.9244 |
| 11.9279 | 0.0032 | 15 | 11.9236 |
| 11.9271 | 0.0039 | 18 | 11.9226 |
| 11.9167 | 0.0045 | 21 | 11.9214 |
| 11.9164 | 0.0052 | 24 | 11.9200 |
| 11.9165 | 0.0058 | 27 | 11.9183 |
| 11.9169 | 0.0065 | 30 | 11.9164 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1