Anthony Miyaguchi
commited on
Commit
·
d41c4d4
1
Parent(s):
a0583df
Move everything into a single script
Browse files- evaluate/submission.py +41 -5
- script.py +80 -1
evaluate/submission.py
CHANGED
@@ -1,10 +1,31 @@
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import torch
|
|
|
3 |
from torch import nn
|
4 |
-
from torch.utils.data import DataLoader
|
5 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
class LinearClassifier(nn.Module):
|
@@ -18,6 +39,21 @@ class LinearClassifier(nn.Module):
|
|
18 |
return torch.log_softmax(self.model(x), dim=1)
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def make_submission(
|
22 |
test_metadata,
|
23 |
model_path,
|
@@ -29,13 +65,13 @@ def make_submission(
|
|
29 |
model = LinearClassifier(hparams["num_features"], hparams["num_classes"])
|
30 |
model.load_state_dict(checkpoint["state_dict"])
|
31 |
|
32 |
-
transform =
|
33 |
dataloader = DataLoader(
|
34 |
ImageDataset(test_metadata, images_root_path), batch_size=32, num_workers=4
|
35 |
)
|
36 |
rows = []
|
37 |
for batch in dataloader:
|
38 |
-
batch = transform(batch)
|
39 |
observation_ids = batch["observation_id"]
|
40 |
logits = model(batch["features"])
|
41 |
class_ids = torch.argmax(logits, dim=1)
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
+
from PIL import Image
|
6 |
from torch import nn
|
7 |
+
from torch.utils.data import DataLoader, Dataset
|
8 |
+
from transformers import AutoImageProcessor, AutoModel
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
|
12 |
+
class ImageDataset(Dataset):
|
13 |
+
def __init__(self, metadata_path, images_root_path):
|
14 |
+
self.metadata_path = metadata_path
|
15 |
+
self.metadata = pd.read_csv(metadata_path)
|
16 |
+
self.images_root_path = images_root_path
|
17 |
+
|
18 |
+
def __len__(self):
|
19 |
+
return len(self.metadata)
|
20 |
|
21 |
+
def __getitem__(self, idx):
|
22 |
+
row = self.metadata.iloc[idx]
|
23 |
+
image_path = Path(self.images_root_path) / row.filename
|
24 |
+
img = Image.open(image_path).convert("RGB")
|
25 |
+
# convert to numpy array
|
26 |
+
img = torch.from_numpy(np.array(img))
|
27 |
+
# img = torch.tensor(img).permute(2, 0, 1).float() / 255.0
|
28 |
+
return {"features": img, "observation_id": row.observation_id}
|
29 |
|
30 |
|
31 |
class LinearClassifier(nn.Module):
|
|
|
39 |
return torch.log_softmax(self.model(x), dim=1)
|
40 |
|
41 |
|
42 |
+
class TransformDino:
|
43 |
+
def __init__(self, model_name="facebook/dinov2-base"):
|
44 |
+
self.processor = AutoImageProcessor.from_pretrained(model_name)
|
45 |
+
self.model = AutoModel.from_pretrained(model_name)
|
46 |
+
|
47 |
+
def forward(self, batch):
|
48 |
+
model_inputs = self.processor(images=batch["features"], return_tensors="pt")
|
49 |
+
with torch.no_grad():
|
50 |
+
outputs = self.model(**model_inputs)
|
51 |
+
last_hidden_states = outputs.last_hidden_state
|
52 |
+
# extract the cls token
|
53 |
+
batch["features"] = last_hidden_states[:, 0]
|
54 |
+
return batch
|
55 |
+
|
56 |
+
|
57 |
def make_submission(
|
58 |
test_metadata,
|
59 |
model_path,
|
|
|
65 |
model = LinearClassifier(hparams["num_features"], hparams["num_classes"])
|
66 |
model.load_state_dict(checkpoint["state_dict"])
|
67 |
|
68 |
+
transform = TransformDino()
|
69 |
dataloader = DataLoader(
|
70 |
ImageDataset(test_metadata, images_root_path), batch_size=32, num_workers=4
|
71 |
)
|
72 |
rows = []
|
73 |
for batch in dataloader:
|
74 |
+
batch = transform.forward(batch)
|
75 |
observation_ids = batch["observation_id"]
|
76 |
logits = model(batch["features"])
|
77 |
class_ids = torch.argmax(logits, dim=1)
|
script.py
CHANGED
@@ -1,7 +1,86 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
import zipfile
|
3 |
-
from evaluate.submission import make_submission
|
4 |
from argparse import ArgumentParser
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
def parse_args():
|
|
|
1 |
#!/usr/bin/env python
|
2 |
import zipfile
|
|
|
3 |
from argparse import ArgumentParser
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torch import nn
|
11 |
+
from torch.utils.data import DataLoader, Dataset
|
12 |
+
from transformers import AutoImageProcessor, AutoModel
|
13 |
+
|
14 |
+
|
15 |
+
class ImageDataset(Dataset):
|
16 |
+
def __init__(self, metadata_path, images_root_path):
|
17 |
+
self.metadata_path = metadata_path
|
18 |
+
self.metadata = pd.read_csv(metadata_path)
|
19 |
+
self.images_root_path = images_root_path
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.metadata)
|
23 |
+
|
24 |
+
def __getitem__(self, idx):
|
25 |
+
row = self.metadata.iloc[idx]
|
26 |
+
image_path = Path(self.images_root_path) / row.filename
|
27 |
+
img = Image.open(image_path)
|
28 |
+
img = torch.from_numpy(np.array(img))
|
29 |
+
return {"features": img, "observation_id": row.observation_id}
|
30 |
+
|
31 |
+
|
32 |
+
class LinearClassifier(nn.Module):
|
33 |
+
def __init__(self, num_features, num_classes):
|
34 |
+
super().__init__()
|
35 |
+
self.num_features = num_features
|
36 |
+
self.num_classes = num_classes
|
37 |
+
self.model = nn.Linear(num_features, num_classes)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
return torch.log_softmax(self.model(x), dim=1)
|
41 |
+
|
42 |
+
|
43 |
+
class TransformDino:
|
44 |
+
def __init__(self, model_name="facebook/dinov2-base"):
|
45 |
+
self.processor = AutoImageProcessor.from_pretrained(model_name)
|
46 |
+
self.model = AutoModel.from_pretrained(model_name)
|
47 |
+
|
48 |
+
def forward(self, batch):
|
49 |
+
model_inputs = self.processor(images=batch["features"], return_tensors="pt")
|
50 |
+
with torch.no_grad():
|
51 |
+
outputs = self.model(**model_inputs)
|
52 |
+
last_hidden_states = outputs.last_hidden_state
|
53 |
+
# extract the cls token
|
54 |
+
batch["features"] = last_hidden_states[:, 0]
|
55 |
+
return batch
|
56 |
+
|
57 |
+
|
58 |
+
def make_submission(
|
59 |
+
test_metadata,
|
60 |
+
model_path,
|
61 |
+
output_csv_path="./submission.csv",
|
62 |
+
images_root_path="/tmp/data/private_testset",
|
63 |
+
):
|
64 |
+
checkpoint = torch.load(model_path)
|
65 |
+
hparams = checkpoint["hyper_parameters"]
|
66 |
+
model = LinearClassifier(hparams["num_features"], hparams["num_classes"])
|
67 |
+
model.load_state_dict(checkpoint["state_dict"])
|
68 |
+
|
69 |
+
transform = TransformDino()
|
70 |
+
dataloader = DataLoader(
|
71 |
+
ImageDataset(test_metadata, images_root_path), batch_size=32, num_workers=4
|
72 |
+
)
|
73 |
+
rows = []
|
74 |
+
for batch in dataloader:
|
75 |
+
batch = transform.forward(batch)
|
76 |
+
observation_ids = batch["observation_id"]
|
77 |
+
logits = model(batch["features"])
|
78 |
+
class_ids = torch.argmax(logits, dim=1)
|
79 |
+
for observation_id, class_id in zip(observation_ids, class_ids):
|
80 |
+
row = {"observation_id": int(observation_id), "class_id": int(class_id)}
|
81 |
+
rows.append(row)
|
82 |
+
submission_df = pd.DataFrame(rows)
|
83 |
+
submission_df.to_csv(output_csv_path, index=False)
|
84 |
|
85 |
|
86 |
def parse_args():
|