dtruong46me commited on
Commit
c6818d5
·
verified ·
1 Parent(s): faac607

End of training

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: Salesforce/codet5p-770m
7
+ model-index:
8
+ - name: codet5p-770m-lora
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # codet5p-770m-lora
16
+
17
+ This model is a fine-tuned version of [Salesforce/codet5p-770m](https://huggingface.co/Salesforce/codet5p-770m) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1024
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 3
40
+ - eval_batch_size: 3
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 12
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 5
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:------:|:----:|:---------------:|
52
+ | 0.3504 | 0.9979 | 349 | 0.1097 |
53
+ | 0.1159 | 1.9986 | 699 | 0.1053 |
54
+ | 0.1101 | 2.9993 | 1049 | 0.1035 |
55
+ | 0.1077 | 4.0 | 1399 | 0.1027 |
56
+ | 0.1064 | 4.9893 | 1745 | 0.1024 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - PEFT 0.11.1
62
+ - Transformers 4.41.2
63
+ - Pytorch 2.1.2
64
+ - Datasets 2.20.0
65
+ - Tokenizers 0.19.1