File size: 29,231 Bytes
e09333c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# thesis.py
# -*- coding: utf-8 -*-

import pandas as pd
import emoji
import json
import re
import numpy as np
from underthesea import word_tokenize
from tqdm import tqdm
import torch
from torchtext.vocab import Vectors
from sklearn.model_selection import train_test_split
from sklearn.utils import resample
from sklearn.metrics import (
    accuracy_score,
    classification_report,
    precision_score,
    recall_score,
    f1_score,
    confusion_matrix
)
from tensorflow.keras.preprocessing.sequence import pad_sequences
from torch.utils.data import DataLoader, TensorDataset
import torch.nn as nn
import torch.optim as optim
import tensorflow as tf
import os
import joblib

# ========== CÁC HÀM TIỀN XỬ LÝ ==========

def preprocess_sentence(sentence, abbreviations, emoji_mapping):
    """
    Tiền xử lý 1 câu: chuyển thường, thay thế emoji, xóa từ thô tục, 
    ký tự đặc biệt, chuẩn hóa khoảng trắng, v.v.
    """
    sentence = sentence.lower()
    sentence = replace_emojis(sentence, emoji_mapping)
    sentence = remove_profanity(sentence)
    sentence = remove_special_characters(sentence)
    sentence = normalize_whitespace(sentence)
    sentence = replace_abbreviations(sentence, abbreviations)
    sentence = remove_repeated_characters(sentence)
    sentence = replace_numbers(sentence)
    sentence = tokenize_sentence(sentence)
    return sentence

def replace_emojis(sentence, emoji_mapping):
    processed_sentence = []
    for char in sentence:
        if char in emoji_mapping:
            processed_sentence.append(emoji_mapping[char])
        elif not emoji.is_emoji(char):
            processed_sentence.append(char)
    return ''.join(processed_sentence)

def remove_profanity(sentence):
    profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
    words = sentence.split()
    filtered_words = [word for word in words if word.lower() not in profane_words]
    return ' '.join(filtered_words)

def remove_special_characters(sentence):
    return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)

def normalize_whitespace(sentence):
    return ' '.join(sentence.split())

def replace_abbreviations(sentence, abbreviations):
    words = sentence.split()
    replaced_words = [
        " ".join(abbreviations[word]) if word in abbreviations else word
        for word in words
    ]
    return ' '.join(replaced_words)

def remove_repeated_characters(sentence):
    # Ví dụ: "đẹp quáaaaaaa" -> "đẹp quá"
    return re.sub(r"(.)\1{2,}", r"\1", sentence)

def replace_numbers(sentence):
    # Thay toàn bộ số bằng token [number]
    return re.sub(r"\d+", "[number]", sentence)

def tokenize_sentence(sentence):
    # Tách từ bằng underthesea
    return ' '.join(word_tokenize(sentence))


# ========== VOCABULARY CLASS ==========

class Vocabulary:
    def __init__(self):
        self.word2id = {}
        self.word2id['<pad>'] = 0
        self.word2id['<unk>'] = 1
        self.unk_id = 1
        self.id2word = {0: '<pad>', 1: '<unk>'}

    def __getitem__(self, word):
        return self.word2id.get(word, self.unk_id)

    def __contains__(self, word):
        return word in self.word2id

    def __len__(self):
        return len(self.word2id)

    def lookup_tokens(self, indices):
        return [self.id2word[idx] for idx in indices]

    def add(self, word):
        if word not in self.word2id:
            idx = len(self.word2id)
            self.word2id[word] = idx
            self.id2word[idx] = word

    @staticmethod
    def tokenize_corpus(corpus):
        tokenized_corpus = []
        for doc in tqdm(corpus, desc="Tokenizing Corpus"):
            tokens = [w.replace(" ", "_") for w in word_tokenize(doc)]
            tokenized_corpus.append(tokens)
        return tokenized_corpus

    def corpus_to_tensor(self, corpus, is_tokenized=False):
        """
        corpus: list các câu (chuỗi) hoặc list các list từ (nếu is_tokenized=True)
        return: list[list[int]], mỗi câu là 1 list gồm các chỉ số token
        """
        tokenized_corpus = (
            self.tokenize_corpus(corpus) if not is_tokenized else corpus
        )
        return [
            [self[token] for token in doc]
            for doc in tokenized_corpus
        ]


# ========== EMOJI MAPPING ==========

emoji_mapping = {
    "😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
    "🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
    "🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
    "😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
    "🤑": "[satisfaction]",
    "🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
    "😏": "[sarcasm]",
    "😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
    "😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
    "😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
    "🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
    "🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
    "😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
    "😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
    "😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
    "😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
    "😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}

def load_abbreviations(path):
    with open(path, "r", encoding="utf-8") as f:
        return json.load(f)


# ========== DATA MANAGER ==========

class DataManager:
    def __init__(self, file_path, abbreviations_path, word2vec_path):
        self.file_path = file_path
        self.abbreviations_path = abbreviations_path
        self.word2vec_path = word2vec_path
        self.vocabulary = None
        self.word_embeddings = None
        self.abbreviations = None
        self.load_abbreviations()

    def load_abbreviations(self):
        with open(self.abbreviations_path, "r", encoding="utf-8") as f:
            self.abbreviations = json.load(f)

    def load_word2vec(self):
        """
        Tải vector từ file word2vec, 
        dùng torchtext.Vectors để load embedding pretrained.
        """
        self.word_embeddings = Vectors(
            name=self.word2vec_path, 
            unk_init=torch.Tensor.normal_
        )

    def create_vocab_from_corpus(self, corpus, max_vocab_size=30000):
        """
        Tạo vocabulary từ corpus, chỉ lấy top max_vocab_size từ.
        """
        vocab = Vocabulary()
        from collections import Counter
        counter = Counter()

        for sent in corpus:
            for token in sent.split():
                counter[token] += 1

        most_common = counter.most_common(max_vocab_size)
        for word, _freq in most_common:
            vocab.add(word)

        return vocab

    def preprocess_data(self):
        df = pd.read_excel(self.file_path)
        if "Sentence" not in df.columns:
            raise ValueError("Cột 'Sentence' không tồn tại trong dataset!")

        # Tiền xử lý từng câu
        df["processed_sentence"] = df["Sentence"].apply(
            lambda x: preprocess_sentence(str(x), self.abbreviations, emoji_mapping)
        )

        # Loại những dòng rỗng
        df = df[df["processed_sentence"].str.strip().astype(bool)]

        # Tạo vocab từ chính dữ liệu
        all_sentences = df["processed_sentence"].tolist()
        self.vocabulary = self.create_vocab_from_corpus(all_sentences, max_vocab_size=30000)

        # Load word2vec
        self.load_word2vec()

        return df

    def build_pretrained_embedding_matrix(self, embedding_dim=100):
        """
        Tạo weight_matrix (numpy) (vocab_size x embedding_dim)
        với trọng số pretrained. 
        """
        vocab_size = len(self.vocabulary)
        weight_matrix = np.random.normal(
            scale=0.1, size=(vocab_size, embedding_dim)
        ).astype(np.float32)

        # Copy vector pretrained
        for word, idx in self.vocabulary.word2id.items():
            if word in self.word_embeddings.stoi:
                weight_matrix[idx] = self.word_embeddings.vectors[
                    self.word_embeddings.stoi[word]
                ]

        return weight_matrix

    def split_and_convert(
        self, df, label_column="Emotion", maxlen=400, test_size=0.2,
        for_keras=False, batch_size=32
    ):
        """
        Chia dữ liệu thành train/test. 
        - for_keras=False → return train_loader, test_loader, label_mapping (PyTorch)
        - for_keras=True  → return X_train, X_test, y_train_onehot, y_test_onehot, label_mapping (Keras)
        """
        if label_column not in df.columns:
            raise ValueError(
                f"Cột '{label_column}' không tồn tại. Hiện có: {df.columns.tolist()}"
            )

        # Tạo mapping nhãn -> số
        label_mapping = {label: idx for idx, label in enumerate(df[label_column].unique())}
        df[label_column] = df[label_column].map(label_mapping)
        if df[label_column].isnull().any():
            missing = df[df[label_column].isnull()][label_column].unique()
            raise ValueError(f"Những nhãn cảm xúc sau không có trong label_mapping: {missing}")

        X = df["processed_sentence"].tolist()
        y = df[label_column].tolist()

        # Stratify to maintain class distribution
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=test_size, random_state=42, stratify=y
        )

        # Convert text -> index
        X_train_ids = self.vocabulary.corpus_to_tensor(X_train, is_tokenized=False)
        X_test_ids  = self.vocabulary.corpus_to_tensor(X_test,  is_tokenized=False)

        # Pad
        X_train_padded = pad_sequences(X_train_ids, maxlen=maxlen, padding='post', truncating='post')
        X_test_padded  = pad_sequences(X_test_ids,  maxlen=maxlen, padding='post', truncating='post')

        print(">>> Debug Split and Convert:")
        print("X_train_padded.shape:", X_train_padded.shape)
        print("X_test_padded.shape: ", X_test_padded.shape)
        print("y_train length:", len(y_train))
        print("y_test length: ", len(y_test))
        print("vocab_size:", len(self.vocabulary))

        if for_keras:
            num_classes = len(label_mapping)
            y_train_onehot = torch.nn.functional.one_hot(
                torch.tensor(y_train), 
                num_classes=num_classes
            ).numpy()
            y_test_onehot  = torch.nn.functional.one_hot(
                torch.tensor(y_test),
                num_classes=num_classes
            ).numpy()

            print("y_train_onehot.shape:", y_train_onehot.shape)
            print("y_test_onehot.shape: ", y_test_onehot.shape)

            return X_train_padded, X_test_padded, y_train_onehot, y_test_onehot, label_mapping
        else:
            # Trả về DataLoader
            X_train_t = torch.tensor(X_train_padded, dtype=torch.long)
            X_test_t  = torch.tensor(X_test_padded,  dtype=torch.long)
            y_train_t = torch.tensor(y_train, dtype=torch.long)
            y_test_t  = torch.tensor(y_test,  dtype=torch.long)

            train_ds = TensorDataset(X_train_t, y_train_t)
            test_ds  = TensorDataset(X_test_t,  y_test_t)

            train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
            test_loader  = DataLoader(test_ds, batch_size=batch_size, shuffle=False)

            return train_loader, test_loader, label_mapping


# ========== MÔ HÌNH PYTORCH RNN ==========

class SimpleRNN(nn.Module):
    def __init__(self, pretrained_weight, hidden_dim, output_dim, dropout=0.3):
        super(SimpleRNN, self).__init__()
        vocab_size, embedding_dim = pretrained_weight.shape
        # Tạo nn.Embedding từ pretrained_weight
        self.embedding = nn.Embedding.from_pretrained(
            torch.from_numpy(pretrained_weight),
            freeze=False  # True nếu muốn cố định embedding
        )
        self.rnn = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
        self.dropout = nn.Dropout(dropout)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        embedded = self.dropout(self.embedding(x))
        _, (hidden, _) = self.rnn(embedded)
        hidden = self.dropout(hidden.squeeze(0))
        output = self.fc(hidden)
        return output


def predict_emotion_rnn(model, text, data_manager, label_mapping, device):
    model.eval()
    with torch.no_grad():
        processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
        tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
        text_ids = data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True)
        text_padded = pad_sequences(text_ids, maxlen=400, padding='post', truncating='post')
        text_tensor = torch.tensor(
            text_padded,
            dtype=torch.long
        ).to(device)

        output = model(text_tensor)
        _, predicted = torch.max(output, 1)
        rev_map = {v: k for k, v in label_mapping.items()}
        return rev_map[predicted.item()]


# ========== MÔ HÌNH KERAS CNN-LSTM ==========

def predict_emotion_cnn_lstm(model, text, data_manager, label_mapping):
    processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
    tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
    text_ids = data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True)
    text_padded = pad_sequences(text_ids, maxlen=400, padding='post', truncating='post')
    output = model.predict(text_padded)
    pred = output.argmax(axis=1)[0]
    rev_map = {v: k for k, v in label_mapping.items()}
    return rev_map[pred]


# ========== MAIN ==========

if __name__ == "__main__":
    from keras.models import Model
    from keras.layers import (
        Input, Embedding, Convolution1D, LSTM, Dense, Dropout, Lambda, concatenate
    )
    from keras.optimizers import Adam
    from keras.callbacks import ModelCheckpoint, EarlyStopping

    # -------- ĐƯỜNG DẪN ----------
    file_path = "train.xlsx"
    abbreviations_path = "abbreviations.json"
    word2vec_path = "word2vec_vi_syllables_100dims.txt"
    output_path = "processed.xlsx"

    # Khởi tạo DataManager
    data_manager = DataManager(
        file_path=file_path,
        abbreviations_path=abbreviations_path,
        word2vec_path=word2vec_path
    )

    # 1) Tiền xử lý, tạo vocab, load word2vec
    df = data_manager.preprocess_data()
    print("Trước khi cân bằng lớp (undersampling/oversampling):")
    print(df["Emotion"].value_counts())

    # 2) Cân bằng lớp dữ liệu (Ví dụ: Oversample 'Other' lên 3000)
    # Bạn có thể điều chỉnh theo nhu cầu của mình
    df_enjoyment = df[df["Emotion"] == "Enjoyment"]
    df_other     = df[df["Emotion"] == "Other"]
    df_anger     = df[df["Emotion"] == "Anger"]
    df_sadness   = df[df["Emotion"] == "Sadness"]
    df_disgust   = df[df["Emotion"] == "Disgust"]
    df_fear      = df[df["Emotion"] == "Fear"]
    df_surprise  = df[df["Emotion"] == "Surprise"]

    # Oversample lớp 'Other' lên 3000 (chỉ minh hoạ)
    if len(df_other) < 3000:
        df_other_oversampled = resample(
            df_other, 
            replace=True,
            n_samples=3000,
            random_state=42
        )
    else:
        df_other_oversampled = df_other

    # Giữ nguyên các lớp khác (hoặc oversample tùy ý)
    df_balanced = pd.concat([
        df_enjoyment,
        df_other_oversampled,
        df_anger,
        df_sadness,
        df_disgust,
        df_fear,
        df_surprise
    ], axis=0)

    df_balanced = df_balanced.sample(frac=1, random_state=42).reset_index(drop=True)
    df = df_balanced

    print("\nSau khi cân bằng lớp (demo oversample):")
    print(df["Emotion"].value_counts())

    # Xuất file (nếu muốn)
    df.to_excel(output_path, index=False)

    # ========== TRAIN RNN PYTORCH ==========

    print("\n========== Training PyTorch SimpleRNN ==========")

    # Xây ma trận embedding pretrained
    pretrained_matrix = data_manager.build_pretrained_embedding_matrix(embedding_dim=100)

    # Chia và chuyển đổi dữ liệu thành DataLoader
    train_loader, test_loader, label_mapping = data_manager.split_and_convert(
        df, label_column="Emotion", maxlen=400, test_size=0.2,
        for_keras=False, batch_size=32
    )

    hidden_dim = 128
    output_dim = len(label_mapping)

    model_rnn = SimpleRNN(pretrained_weight=pretrained_matrix,
                          hidden_dim=hidden_dim,
                          output_dim=output_dim,
                          dropout=0.3)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model_rnn.parameters(), lr=1e-3)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model_rnn.to(device)

    num_epochs = 20
    for epoch in range(num_epochs):
        model_rnn.train()
        epoch_loss = 0
        correct = 0
        total = 0

        for X_batch, y_batch in train_loader:
            X_batch = X_batch.to(device)
            y_batch = y_batch.to(device)

            optimizer.zero_grad()
            preds = model_rnn(X_batch)
            loss = criterion(preds, y_batch)
            loss.backward()
            optimizer.step()

            epoch_loss += loss.item()
            _, pred_label = torch.max(preds, 1)
            correct += (pred_label == y_batch).sum().item()
            total += y_batch.size(0)

        epoch_accuracy = correct / total
        epoch_loss_avg = epoch_loss / len(train_loader)
        print(f"Epoch {epoch+1}/{num_epochs}, "
              f"Loss: {epoch_loss_avg:.4f}, "
              f"Accuracy: {epoch_accuracy:.4f}")

    # Đánh giá trên test set với detailed metrics
    model_rnn.eval()
    test_loss = 0
    correct = 0
    total = 0
    y_true = []
    y_pred = []
    with torch.no_grad():
        for X_batch, y_batch in test_loader:
            X_batch = X_batch.to(device)
            y_batch = y_batch.to(device)
            preds = model_rnn(X_batch)
            loss = criterion(preds, y_batch)
            test_loss += loss.item()

            _, predicted = torch.max(preds, 1)
            correct += (predicted == y_batch).sum().item()
            total += y_batch.size(0)

            y_true.extend(y_batch.cpu().numpy())
            y_pred.extend(predicted.cpu().numpy())

    test_accuracy = accuracy_score(y_true, y_pred)
    test_loss_avg = test_loss / len(test_loader)
    precision_macro = precision_score(y_true, y_pred, average='macro', zero_division=0)
    precision_weighted = precision_score(y_true, y_pred, average='weighted', zero_division=0)
    recall_macro = recall_score(y_true, y_pred, average='macro', zero_division=0)
    recall_weighted = recall_score(y_true, y_pred, average='weighted', zero_division=0)
    f1_macro = f1_score(y_true, y_pred, average='macro', zero_division=0)
    f1_weighted = f1_score(y_true, y_pred, average='weighted', zero_division=0)
    report = classification_report(y_true, y_pred, target_names=label_mapping.keys(), digits=4)
    conf_matrix = confusion_matrix(y_true, y_pred)

    # In các chỉ số
    print(f"\nTest Loss: {test_loss_avg:.4f}, Test Accuracy: {test_accuracy:.4f}")
    print(f"Precision (Macro): {precision_macro:.4f}")
    print(f"Precision (Weighted): {precision_weighted:.4f}")
    print(f"Recall (Macro): {recall_macro:.4f}")
    print(f"Recall (Weighted): {recall_weighted:.4f}")
    print(f"F1-Score (Macro): {f1_macro:.4f}")
    print(f"F1-Score (Weighted): {f1_weighted:.4f}")

    print("\n========== Classification Report ==========")
    print(report)

    print("\n========== Confusion Matrix ==========")
    print(conf_matrix)

    # Lưu báo cáo vào file
    rnn_report_dir = "rnn_emotion_model"
    os.makedirs(rnn_report_dir, exist_ok=True)
    with open(os.path.join(rnn_report_dir, "classification_report.txt"), "w", encoding="utf-8") as f:
        f.write("========== Classification Report ==========\n")
        f.write(report)
        f.write("\n========== Additional Metrics ==========\n")
        f.write(f"Test Loss: {test_loss_avg:.4f}\n")
        f.write(f"Test Accuracy: {test_accuracy:.4f}\n")
        f.write(f"Precision (Macro): {precision_macro:.4f}\n")
        f.write(f"Precision (Weighted): {precision_weighted:.4f}\n")
        f.write(f"Recall (Macro): {recall_macro:.4f}\n")
        f.write(f"Recall (Weighted): {recall_weighted:.4f}\n")
        f.write(f"F1-Score (Macro): {f1_macro:.4f}\n")
        f.write(f"F1-Score (Weighted): {f1_weighted:.4f}\n")
        f.write("\n========== Confusion Matrix ==========\n")
        f.write(np.array2string(conf_matrix))

    print("\n========== Classification Report saved to 'rnn_emotion_model/classification_report.txt' ==========")

    # Lưu mô hình RNN
    torch.save(model_rnn.state_dict(), os.path.join(rnn_report_dir, "simple_rnn.pth"))
    print("========== RNN Model saved to 'rnn_emotion_model/simple_rnn.pth' ==========")

    # ========== TRAIN CNN-LSTM KERAS ==========

    print("\n========== Training CNN-LSTM (Keras) ==========")

    # Tạo embedding pretrained cho Keras
    # Chúng ta có pretrained_matrix (num_vocab x 100)
    # Sẽ truyền vào layer Embedding(..., weights=[...])
    X_train_keras, X_test_keras, y_train_keras, y_test_keras, label_mapping_keras = data_manager.split_and_convert(
        df, label_column="Emotion", maxlen=400, test_size=0.2,
        for_keras=True
    )

    maxlen = 400
    vocab_size, embedding_dim = pretrained_matrix.shape

    # Chuyển pretrained_matrix -> float32 (đảm bảo Keras nhận dạng)
    pretrained_matrix_keras = pretrained_matrix.astype(np.float32)

    input_layer = Input(shape=(maxlen,), dtype='int32', name='main_input')
    emb_layer = Embedding(
        input_dim=vocab_size,
        output_dim=embedding_dim,
        weights=[pretrained_matrix_keras],
        trainable=True  # True hoặc False tùy muốn fine-tune embedding
    )(input_layer)

    def max_1d(X):
        return tf.reduce_max(X, axis=1)

    con3 = Convolution1D(150, kernel_size=3, activation='relu')(emb_layer)
    pool_con3 = Lambda(max_1d, output_shape=(150,))(con3)

    con5 = Convolution1D(150, kernel_size=5, activation='relu')(emb_layer)
    pool_con5 = Lambda(max_1d, output_shape=(150,))(con5)

    lstm_out = LSTM(128, dropout=0.3)(emb_layer)

    merged = concatenate([pool_con3, pool_con5, lstm_out])
    dense  = Dense(100, activation='relu')(merged)
    drop   = Dropout(0.3)(dense)
    output = Dense(output_dim, activation='softmax')(drop)

    model_cnn_lstm = Model(inputs=input_layer, outputs=output)
    model_cnn_lstm.compile(
        loss='categorical_crossentropy', 
        optimizer=Adam(lr=1e-3), 
        metrics=['accuracy']
    )

    checkpoint = ModelCheckpoint(
        'cnn_lstm_best.keras',
        save_best_only=True,
        monitor='val_accuracy',
        mode='max'
    )
    early_stopping = EarlyStopping(
        monitor='val_accuracy',
        patience=5,
        restore_best_weights=True
    )

    history = model_cnn_lstm.fit(
        X_train_keras, y_train_keras,
        validation_data=(X_test_keras, y_test_keras),
        epochs=30,
        batch_size=32,
        callbacks=[checkpoint, early_stopping]
    )

    # Đánh giá trên test set với detailed metrics
    loss, acc = model_cnn_lstm.evaluate(X_test_keras, y_test_keras)
    print(f"CNN-LSTM Test Loss: {loss:.4f}, Test Accuracy: {acc:.4f}")

    # Thu thập dự đoán và tính toán các chỉ số
    y_pred_cnn_lstm = model_cnn_lstm.predict(X_test_keras)
    y_pred_cnn_lstm = np.argmax(y_pred_cnn_lstm, axis=1)
    y_true_cnn_lstm = np.argmax(y_test_keras, axis=1)

    test_accuracy_cnn_lstm = accuracy_score(y_true_cnn_lstm, y_pred_cnn_lstm)
    precision_macro_cnn_lstm = precision_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='macro', zero_division=0)
    precision_weighted_cnn_lstm = precision_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='weighted', zero_division=0)
    recall_macro_cnn_lstm = recall_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='macro', zero_division=0)
    recall_weighted_cnn_lstm = recall_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='weighted', zero_division=0)
    f1_macro_cnn_lstm = f1_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='macro', zero_division=0)
    f1_weighted_cnn_lstm = f1_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='weighted', zero_division=0)
    report_cnn_lstm = classification_report(y_true_cnn_lstm, y_pred_cnn_lstm, target_names=label_mapping.keys(), digits=4)
    conf_matrix_cnn_lstm = confusion_matrix(y_true_cnn_lstm, y_pred_cnn_lstm)

    # In các chỉ số
    print(f"\nCNN-LSTM Test Accuracy: {test_accuracy_cnn_lstm:.4f}")
    print(f"Precision (Macro): {precision_macro_cnn_lstm:.4f}")
    print(f"Precision (Weighted): {precision_weighted_cnn_lstm:.4f}")
    print(f"Recall (Macro): {recall_macro_cnn_lstm:.4f}")
    print(f"Recall (Weighted): {recall_weighted_cnn_lstm:.4f}")
    print(f"F1-Score (Macro): {f1_macro_cnn_lstm:.4f}")
    print(f"F1-Score (Weighted): {f1_weighted_cnn_lstm:.4f}")

    print("\n========== CNN-LSTM Classification Report ==========")
    print(report_cnn_lstm)

    print("\n========== CNN-LSTM Confusion Matrix ==========")
    print(conf_matrix_cnn_lstm)

    # Lưu báo cáo vào file
    cnn_lstm_report_dir = "cnn_lstm_emotion_model"
    os.makedirs(cnn_lstm_report_dir, exist_ok=True)
    with open(os.path.join(cnn_lstm_report_dir, "classification_report.txt"), "w", encoding="utf-8") as f:
        f.write("========== CNN-LSTM Classification Report ==========\n")
        f.write(report_cnn_lstm)
        f.write("\n========== Additional Metrics ==========\n")
        f.write(f"Test Loss: {loss:.4f}\n")
        f.write(f"Test Accuracy: {test_accuracy_cnn_lstm:.4f}\n")
        f.write(f"Precision (Macro): {precision_macro_cnn_lstm:.4f}\n")
        f.write(f"Precision (Weighted): {precision_weighted_cnn_lstm:.4f}\n")
        f.write(f"Recall (Macro): {recall_macro_cnn_lstm:.4f}\n")
        f.write(f"Recall (Weighted): {recall_weighted_cnn_lstm:.4f}\n")
        f.write(f"F1-Score (Macro): {f1_macro_cnn_lstm:.4f}\n")
        f.write(f"F1-Score (Weighted): {f1_weighted_cnn_lstm:.4f}\n")
        f.write("\n========== Confusion Matrix ==========\n")
        f.write(np.array2string(conf_matrix_cnn_lstm))

    print("\n========== CNN-LSTM Classification Report saved to 'cnn_lstm_emotion_model/classification_report.txt' ==========")

    # Lưu mô hình CNN-LSTM
    model_cnn_lstm.save(os.path.join(cnn_lstm_report_dir, 'cnn_lstm_model.keras'))
    print(f"========== CNN-LSTM Model saved to '{cnn_lstm_report_dir}/cnn_lstm_model.keras' ==========")

    # ========== LƯU LABEL MAPPING VÀ VOCABULARY ==========
    # Lưu label_mapping và vocabulary cho RNN
    with open(os.path.join(rnn_report_dir, "label_mapping.json"), "w", encoding="utf-8") as f:
        json.dump(label_mapping, f, ensure_ascii=False, indent=4)

    with open(os.path.join(rnn_report_dir, "vocabulary.json"), "w", encoding="utf-8") as f:
        json.dump(data_manager.vocabulary.word2id, f, ensure_ascii=False, indent=4)

    # Lưu label_mapping và vocabulary cho CNN-LSTM
    # Giả sử label_mapping và vocabulary giống nhau, bạn có thể chỉ lưu một lần.
    # Nếu khác, hãy điều chỉnh tương ứng.

    print("========== Label Mapping and Vocabulary saved ==========")

    # ========== DEMO DỰ ĐOÁN 1 CÂU MỚI ==========

    custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"

    # RNN (PyTorch)
    emotion_rnn = predict_emotion_rnn(
        model_rnn, custom_text, data_manager, label_mapping, device
    )
    print(f"Predicted Emotion (RNN): {emotion_rnn}")

    # CNN-LSTM (Keras)
    cnn_lstm_loaded = tf.keras.models.load_model(os.path.join(cnn_lstm_report_dir, 'cnn_lstm_model.keras'))
    emotion_cnn_lstm = predict_emotion_cnn_lstm(
        cnn_lstm_loaded, custom_text, data_manager, label_mapping
    )
    print(f"Predicted Emotion (CNN-LSTM): {emotion_cnn_lstm}")

    # Kiểm tra TF, GPU
    print("TF version:", tf.__version__)
    print("GPU devices:", tf.config.list_physical_devices("GPU"))
    # os.system("nvidia-smi")  # nếu muốn xem info GPU