File size: 13,534 Bytes
e09333c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
# phobert_emotion_balanced.py
# -*- coding: utf-8 -*-
import re
import emoji
import json
import pandas as pd
import torch
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import (
AutoTokenizer,
AutoConfig,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments
)
from sklearn.model_selection import train_test_split
from sklearn.utils import resample
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, classification_report, confusion_matrix
########################
# TIỀN XỬ LÝ
########################
def replace_emojis(sentence, emoji_mapping):
processed_sentence = []
for char in sentence:
if char in emoji_mapping:
processed_sentence.append(emoji_mapping[char])
elif not emoji.is_emoji(char):
processed_sentence.append(char)
return ''.join(processed_sentence)
def remove_profanity(sentence):
profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
words = sentence.split()
filtered = [w for w in words if w.lower() not in profane_words]
return ' '.join(filtered)
def remove_special_characters(sentence):
return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)
def normalize_whitespace(sentence):
return ' '.join(sentence.split())
def remove_repeated_characters(sentence):
return re.sub(r"(.)\1{2,}", r"\1", sentence)
def replace_numbers(sentence):
return re.sub(r"\d+", "[number]", sentence)
def tokenize_underthesea(sentence):
from underthesea import word_tokenize
tokens = word_tokenize(sentence)
return " ".join(tokens)
def preprocess_sentence(sentence, abbreviations, emoji_mapping):
sentence = sentence.lower()
sentence = replace_emojis(sentence, emoji_mapping)
sentence = remove_profanity(sentence)
sentence = remove_special_characters(sentence)
sentence = normalize_whitespace(sentence)
# Thay thế viết tắt
words = sentence.split()
replaced = []
for w in words:
if w in abbreviations:
replaced.append(" ".join(abbreviations[w]))
else:
replaced.append(w)
sentence = " ".join(replaced)
sentence = remove_repeated_characters(sentence)
sentence = replace_numbers(sentence)
# Tokenize
sentence = tokenize_underthesea(sentence)
return sentence
emoji_mapping = {
"😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
"🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
"🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
"😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
"🤑": "[satisfaction]",
"🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
"😏": "[sarcasm]",
"😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
"😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
"😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
"🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
"🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
"😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
"😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
"😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
"😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
"😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}
def load_abbreviations(path):
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
# Dataset HF
class PhoBertEmotionDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item["labels"] = torch.tensor(self.labels[idx])
return item
###################################
# MAIN
###################################
if __name__ == "__main__":
file_path = "train.xlsx"
abbreviations_path = "abbreviations.json"
output_path = "processed_phobert.xlsx"
abbreviations = load_abbreviations(abbreviations_path)
df = pd.read_excel(file_path)
if "Sentence" not in df.columns or "Emotion" not in df.columns:
raise ValueError("Dataset phải chứa cột 'Sentence' và 'Emotion'!")
# Tiền xử lý
df["processed_sentence"] = df["Sentence"].apply(
lambda x: preprocess_sentence(str(x), abbreviations, emoji_mapping)
)
# Loại bỏ rỗng
df = df[df["processed_sentence"].str.strip().astype(bool)]
print("Trước khi cân bằng:")
print(df["Emotion"].value_counts())
# =========== CÂN BẰNG TẤT CẢ CÁC LỚP =============
# Lấy max samples
max_count = df["Emotion"].value_counts().max()
df_balanced_list = []
for emo in df["Emotion"].unique():
df_emo = df[df["Emotion"] == emo]
if len(df_emo) < max_count:
# Oversample lên max_count
df_emo_oversampled = resample(
df_emo,
replace=True,
n_samples=max_count,
random_state=42
)
df_balanced_list.append(df_emo_oversampled)
else:
# Nếu emo này = max_count rồi thì giữ nguyên
df_balanced_list.append(df_emo)
df = pd.concat(df_balanced_list, axis=0)
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
print("\nSau khi cân bằng tất cả lớp:")
print(df["Emotion"].value_counts())
df.to_excel(output_path, index=False)
# Tạo label2id
unique_labels = sorted(df["Emotion"].unique()) # Sắp xếp để cố định
label2id = {label: i for i, label in enumerate(unique_labels)}
id2label = {v: k for k, v in label2id.items()}
df["label_id"] = df["Emotion"].map(label2id)
# Tách train/test
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42, stratify=df["label_id"])
print(f"Train size = {len(train_df)}, Test size = {len(test_df)}")
# Load tokenizer
checkpoint = "vinai/phobert-base"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def tokenize_texts(texts):
return tokenizer(
texts,
padding=True,
truncation=True,
max_length=256
)
train_texts = train_df["processed_sentence"].tolist()
train_labels = train_df["label_id"].tolist()
test_texts = test_df["processed_sentence"].tolist()
test_labels = test_df["label_id"].tolist()
train_encodings = tokenize_texts(train_texts)
test_encodings = tokenize_texts(test_texts)
train_dataset = PhoBertEmotionDataset(train_encodings, train_labels)
test_dataset = PhoBertEmotionDataset(test_encodings, test_labels)
# Load model
config = AutoConfig.from_pretrained(checkpoint)
config.num_labels = len(label2id)
model = AutoModelForSequenceClassification.from_pretrained(
checkpoint,
config=config
)
# Tăng epoch lên 10, LR=2e-5
training_args = TrainingArguments(
output_dir="./phobert_results_v2",
overwrite_output_dir=True,
do_train=True,
do_eval=True,
evaluation_strategy="epoch",
save_strategy="epoch",
num_train_epochs=10, # Tăng epoch
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
learning_rate=2e-5,
logging_dir="./logs",
logging_steps=50,
load_best_model_at_end=True,
metric_for_best_model="f1_weighted", # Chọn metric để lưu model tốt nhất
greater_is_better=True,
seed=42
)
# Define compute_metrics with additional metrics
def compute_metrics(eval_pred):
logits, labels = eval_pred
preds = np.argmax(logits, axis=-1)
precision_weighted = precision_score(labels, preds, average='weighted', zero_division=0)
recall_weighted = recall_score(labels, preds, average='weighted', zero_division=0)
f1_weighted = f1_score(labels, preds, average='weighted', zero_division=0)
precision_macro = precision_score(labels, preds, average='macro', zero_division=0)
recall_macro = recall_score(labels, preds, average='macro', zero_division=0)
f1_macro = f1_score(labels, preds, average='macro', zero_division=0)
accuracy = accuracy_score(labels, preds)
return {
"accuracy": accuracy,
"precision_weighted": precision_weighted,
"recall_weighted": recall_weighted,
"f1_weighted": f1_weighted,
"precision_macro": precision_macro,
"recall_macro": recall_macro,
"f1_macro": f1_macro
}
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
print("\n========== Training PhoBERT (balanced, more epochs) ==========")
trainer.train()
print("\n========== Evaluate on Test set ==========")
results = trainer.evaluate(test_dataset)
print("Test results:", results)
# Extract additional metrics
print("\n========== Additional Metrics ==========")
print(f"Test Loss: {results.get('eval_loss'):.4f}")
print(f"Test Accuracy: {results.get('eval_accuracy'):.4f}")
print(f"Precision (Macro): {results.get('eval_precision_macro'):.4f}")
print(f"Precision (Weighted): {results.get('eval_precision_weighted'):.4f}")
print(f"Recall (Macro): {results.get('eval_recall_macro'):.4f}")
print(f"Recall (Weighted): {results.get('eval_recall_weighted'):.4f}")
print(f"F1-Score (Macro): {results.get('eval_f1_macro'):.4f}")
print(f"F1-Score (Weighted): {results.get('eval_f1_weighted'):.4f}")
# Generate detailed classification report
print("\n========== Detailed Classification Report ==========")
predictions, labels, _ = trainer.predict(test_dataset)
preds = np.argmax(predictions, axis=1)
report = classification_report(labels, preds, target_names=unique_labels, digits=4)
print(report)
# Tính Confusion Matrix
conf_matrix = confusion_matrix(labels, preds)
print("\nConfusion Matrix:")
print(conf_matrix)
# Vẽ Confusion Matrix
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=unique_labels,
yticklabels=unique_labels)
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.title('Confusion Matrix')
plt.tight_layout()
confusion_matrix_path = os.path.join("phobert_emotion_model", "confusion_matrix.png")
os.makedirs("phobert_emotion_model", exist_ok=True)
plt.savefig(confusion_matrix_path)
plt.close()
print(f"\nConfusion Matrix plot saved to '{confusion_matrix_path}'")
# Lưu Classification Report vào file
report_path = os.path.join("phobert_emotion_model", "classification_report.txt")
with open(report_path, "w", encoding="utf-8") as f:
f.write("========== Classification Report ==========\n")
f.write(report)
f.write("\n========== Confusion Matrix ==========\n")
f.write(np.array2string(conf_matrix))
print(f"\nClassification Report saved to '{report_path}'")
# Lưu mô hình và tokenizer
model_output_dir = "./phobert_emotion_model"
os.makedirs(model_output_dir, exist_ok=True)
model.save_pretrained(os.path.join(model_output_dir, "phobert_emotion_model"))
tokenizer.save_pretrained(os.path.join(model_output_dir, "phobert_emotion_model"))
with open(os.path.join(model_output_dir, "id2label.json"), "w", encoding="utf-8") as f:
json.dump(id2label, f, ensure_ascii=False, indent=4)
print("\n========== Model and Tokenizer saved ==========")
# Predict 1 câu (ví dụ)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def predict_text(text):
text_proc = preprocess_sentence(text, abbreviations, emoji_mapping)
enc = tokenizer(text_proc, padding=True, truncation=True, max_length=256, return_tensors="pt")
enc = {k: v.to(device) for k, v in enc.items()}
with torch.no_grad():
out = model(**enc)
pred_id = out.logits.argmax(dim=-1).item()
return id2label[pred_id]
custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"
emotion_pred = predict_text(custom_text)
print("\nCâu ví dụ:", custom_text)
print("Dự đoán cảm xúc:", emotion_pred)
print("\nHoàn thành demo PhoBERT với cân bằng dữ liệu & nhiều epoch hơn!")
|