File size: 10,788 Bytes
e09333c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# svm_emotion_classifier.py
# -*- coding: utf-8 -*-
import re
import emoji
import json
import pandas as pd
import numpy as np
import torch # Có thể không cần thiết cho SVM, nhưng giữ lại nếu cần
from underthesea import word_tokenize
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import (
accuracy_score,
classification_report,
precision_score,
recall_score,
f1_score,
confusion_matrix
)
from sklearn.utils import resample
import joblib
import os
########################
# TIỀN XỬ LÝ
########################
def replace_emojis(sentence, emoji_mapping):
processed_sentence = []
for char in sentence:
if char in emoji_mapping:
processed_sentence.append(emoji_mapping[char])
elif not emoji.is_emoji(char):
processed_sentence.append(char)
return ''.join(processed_sentence)
def remove_profanity(sentence):
profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
words = sentence.split()
filtered = [w for w in words if w.lower() not in profane_words]
return ' '.join(filtered)
def remove_special_characters(sentence):
return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)
def normalize_whitespace(sentence):
return ' '.join(sentence.split())
def remove_repeated_characters(sentence):
return re.sub(r"(.)\1{2,}", r"\1", sentence)
def replace_numbers(sentence):
return re.sub(r"\d+", "[number]", sentence)
def tokenize_underthesea(sentence):
tokens = word_tokenize(sentence)
return " ".join(tokens)
def preprocess_sentence(sentence, abbreviations, emoji_mapping):
sentence = sentence.lower()
sentence = replace_emojis(sentence, emoji_mapping)
sentence = remove_profanity(sentence)
sentence = remove_special_characters(sentence)
sentence = normalize_whitespace(sentence)
# Thay thế viết tắt
words = sentence.split()
replaced = []
for w in words:
if w in abbreviations:
replaced.append(" ".join(abbreviations[w]))
else:
replaced.append(w)
sentence = " ".join(replaced)
sentence = remove_repeated_characters(sentence)
sentence = replace_numbers(sentence)
# Tokenize tiếng Việt
sentence = tokenize_underthesea(sentence)
return sentence
emoji_mapping = {
"😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
"🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
"🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
"😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
"🤑": "[satisfaction]",
"🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
"😏": "[sarcasm]",
"😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
"😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
"😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
"🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
"🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
"😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
"😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
"😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
"😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
"😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}
def load_abbreviations(path):
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
###################################
# MAIN
###################################
if __name__ == "__main__":
file_path = "train.xlsx"
abbreviations_path = "abbreviations.json"
output_path = "processed_svm.xlsx" # Changed output filename to reflect SVM
abbreviations = load_abbreviations(abbreviations_path)
df = pd.read_excel(file_path)
if "Sentence" not in df.columns or "Emotion" not in df.columns:
raise ValueError("Dataset phải chứa cột 'Sentence' và 'Emotion'!")
# Tiền xử lý
df["processed_sentence"] = df["Sentence"].apply(
lambda x: preprocess_sentence(str(x), abbreviations, emoji_mapping)
)
# Loại bỏ rỗng
df = df[df["processed_sentence"].str.strip().astype(bool)]
print("Trước khi cân bằng:")
print(df["Emotion"].value_counts())
# =========== CÂN BẰNG TẤT CẢ CÁC LỚP =============
# Lấy max samples
max_count = df["Emotion"].value_counts().max()
df_balanced_list = []
for emo in df["Emotion"].unique():
df_emo = df[df["Emotion"] == emo]
if len(df_emo) < max_count:
# Oversample lên max_count
df_emo_oversampled = resample(
df_emo,
replace=True,
n_samples=max_count,
random_state=42
)
df_balanced_list.append(df_emo_oversampled)
else:
# Nếu emo này = max_count rồi thì giữ nguyên
df_balanced_list.append(df_emo)
df = pd.concat(df_balanced_list, axis=0)
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
print("\nSau khi cân bằng tất cả lớp:")
print(df["Emotion"].value_counts())
df.to_excel(output_path, index=False)
# Tạo label2id và id2label theo thứ tự bạn cung cấp
custom_id2label = {
0: 'Anger',
1: 'Disgust',
2: 'Enjoyment',
3: 'Fear',
4: 'Other',
5: 'Sadness',
6: 'Surprise'
}
label2id = {label: idx for idx, label in custom_id2label.items()}
id2label = {v: k for k, v in label2id.items()}
df["label_id"] = df["Emotion"].map(label2id)
if df["label_id"].isnull().any():
missing = df[df["label_id"].isnull()]["Emotion"].unique()
raise ValueError(f"Những nhãn cảm xúc sau không có trong label2id: {missing}")
# Tách train/test
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42, stratify=df["label_id"])
print(f"Train size = {len(train_df)}, Test size = {len(test_df)}")
# Feature Extraction với TF-IDF
vectorizer = TfidfVectorizer(max_features=5000)
X_train = vectorizer.fit_transform(train_df["processed_sentence"])
X_test = vectorizer.transform(test_df["processed_sentence"])
y_train = train_df["label_id"].values
y_test = test_df["label_id"].values
# Huấn luyện mô hình SVM
svm_classifier = SVC(kernel='linear', probability=True, random_state=42)
print("\n========== Training SVM ==========")
svm_classifier.fit(X_train, y_train)
# Đánh giá mô hình
print("\n========== Evaluate on Test set ==========")
y_pred = svm_classifier.predict(X_test)
# Tính các chỉ số
accuracy = accuracy_score(y_test, y_pred)
precision_macro = precision_score(y_test, y_pred, average='macro', zero_division=0)
precision_weighted = precision_score(y_test, y_pred, average='weighted', zero_division=0)
recall_macro = recall_score(y_test, y_pred, average='macro', zero_division=0)
recall_weighted = recall_score(y_test, y_pred, average='weighted', zero_division=0)
f1_macro = f1_score(y_test, y_pred, average='macro', zero_division=0)
f1_weighted = f1_score(y_test, y_pred, average='weighted', zero_division=0)
conf_matrix = confusion_matrix(y_test, y_pred)
# In các chỉ số
print(f"Test Accuracy: {accuracy:.4f}")
print(f"Precision (Macro): {precision_macro:.4f}")
print(f"Precision (Weighted): {precision_weighted:.4f}")
print(f"Recall (Macro): {recall_macro:.4f}")
print(f"Recall (Weighted): {recall_weighted:.4f}")
print(f"F1-Score (Macro): {f1_macro:.4f}")
print(f"F1-Score (Weighted): {f1_weighted:.4f}")
print("\n========== Classification Report ==========")
report = classification_report(y_test, y_pred, target_names=custom_id2label.values(), digits=4)
print(report)
# Lưu báo cáo vào file
report_path = os.path.join("svm_emotion_model", "classification_report.txt")
os.makedirs(os.path.dirname(report_path), exist_ok=True)
with open(report_path, "w", encoding="utf-8") as f:
f.write("========== Classification Report ==========\n")
f.write(report)
f.write("\n========== Additional Metrics ==========\n")
f.write(f"Accuracy: {accuracy:.4f}\n")
f.write(f"Precision (Macro): {precision_macro:.4f}\n")
f.write(f"Precision (Weighted): {precision_weighted:.4f}\n")
f.write(f"Recall (Macro): {recall_macro:.4f}\n")
f.write(f"Recall (Weighted): {recall_weighted:.4f}\n")
f.write(f"F1-Score (Macro): {f1_macro:.4f}\n")
f.write(f"F1-Score (Weighted): {f1_weighted:.4f}\n")
f.write("\n========== Confusion Matrix ==========\n")
f.write(np.array2string(conf_matrix))
print("\n========== Classification Report saved to 'svm_emotion_model/classification_report.txt' ==========")
# Lưu mô hình và các thành phần cần thiết
model_output_dir = "./svm_emotion_model"
os.makedirs(model_output_dir, exist_ok=True)
joblib.dump(svm_classifier, os.path.join(model_output_dir, "svm_classifier.joblib"))
joblib.dump(vectorizer, os.path.join(model_output_dir, "tfidf_vectorizer.joblib"))
joblib.dump(id2label, os.path.join(model_output_dir, "id2label.json"))
print("\n========== Model and Vectorizer saved ==========")
# Predict 1 câu (ví dụ)
def predict_text(text):
text_proc = preprocess_sentence(text, abbreviations, emoji_mapping)
X = vectorizer.transform([text_proc])
pred_id = svm_classifier.predict(X)[0]
label = custom_id2label[pred_id]
return label
custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"
emotion_pred = predict_text(custom_text)
print("\nCâu ví dụ:", custom_text)
print("Dự đoán cảm xúc:", emotion_pred)
print("\nHoàn thành demo SVM với cân bằng dữ liệu & nhiều chỉ số đánh giá!")
|