File size: 19,520 Bytes
e09333c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# thesis.py
# -*- coding: utf-8 -*-

import pandas as pd
import emoji
import json
import re
from underthesea import word_tokenize
from tqdm import tqdm
import torch
from torchtext.vocab import Vectors
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.sequence import pad_sequences
from torch.utils.data import DataLoader, TensorDataset
import torch.nn as nn
import torch.optim as optim
import numpy as np
import tensorflow as tf

# ========== CÁC HÀM TIỀN XỬ LÝ ==========

def preprocess_sentence(sentence, abbreviations, emoji_mapping):
    """
    Tiền xử lý 1 câu: chuyển thường, thay thế emoji, xóa từ thô tục, 
    ký tự đặc biệt, chuẩn hóa khoảng trắng, v.v.
    """
    sentence = sentence.lower()
    sentence = replace_emojis(sentence, emoji_mapping)
    sentence = remove_profanity(sentence)
    sentence = remove_special_characters(sentence)
    sentence = normalize_whitespace(sentence)
    sentence = replace_abbreviations(sentence, abbreviations)
    sentence = remove_repeated_characters(sentence)
    sentence = replace_numbers(sentence)
    sentence = tokenize_sentence(sentence)
    return sentence

def replace_emojis(sentence, emoji_mapping):
    processed_sentence = []
    for char in sentence:
        if char in emoji_mapping:
            processed_sentence.append(emoji_mapping[char])
        elif not emoji.is_emoji(char):
            processed_sentence.append(char)
    return ''.join(processed_sentence)

def remove_profanity(sentence):
    profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
    words = sentence.split()
    filtered_words = [word for word in words if word.lower() not in profane_words]
    return ' '.join(filtered_words)

def remove_special_characters(sentence):
    return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)

def normalize_whitespace(sentence):
    return ' '.join(sentence.split())

def replace_abbreviations(sentence, abbreviations):
    words = sentence.split()
    replaced_words = [
        " ".join(abbreviations[word]) if word in abbreviations else word
        for word in words
    ]
    return ' '.join(replaced_words)

def remove_repeated_characters(sentence):
    return re.sub(r"(.)\1{2,}", r"\1", sentence)

def replace_numbers(sentence):
    return re.sub(r"\d+", "[number]", sentence)

def tokenize_sentence(sentence):
    return ' '.join(word_tokenize(sentence))


# ========== LỚP DATA MANAGER ==========

class DataManager:
    def __init__(self, file_path, abbreviations_path, word2vec_path):
        self.file_path = file_path
        self.abbreviations_path = abbreviations_path
        self.word2vec_path = word2vec_path
        self.load_abbreviations()
        self.load_word2vec()

    def load_abbreviations(self):
        with open(self.abbreviations_path, "r", encoding="utf-8") as file:
            self.abbreviations = json.load(file)

    def load_word2vec(self):
        # Tải vector từ file word2vec, unk_init để từ vựng ngoài tập sẽ random normal
        self.word_embeddings = Vectors(name=self.word2vec_path, unk_init=torch.Tensor.normal_)
        self.vocabulary = self.create_vocab_from_word2vec()

    def create_vocab_from_word2vec(self):
        vocab = Vocabulary()
        words_list = list(self.word_embeddings.stoi.keys())
        for word in words_list:
            vocab.add(word)
        return vocab

    def preprocess_data(self):
        df = pd.read_excel(self.file_path)
        if "Sentence" not in df.columns:
            raise ValueError("Cột 'Sentence' không tồn tại trong dataset!")
        
        # Tiền xử lý từng câu
        df["processed_sentence"] = df["Sentence"].apply(
            lambda x: preprocess_sentence(str(x), self.abbreviations, emoji_mapping)
        )
        
        # Loại bỏ những dòng rỗng sau khi xử lý
        df = df[df["processed_sentence"].str.strip().astype(bool)]
        return df

    def split_and_convert(
        self, df, label_column="Emotion", maxlen=400, test_size=0.2,
        for_keras=False, batch_size=32
    ):
        """
        Chia dữ liệu thành train/test. Trả về:
        - Nếu for_keras=False: train_loader, test_loader, label_mapping (PyTorch)
        - Nếu for_keras=True: X_train, X_test, y_train_onehot, y_test_onehot, label_mapping (Keras)
        """

        if label_column not in df.columns:
            raise ValueError(
                f"Cột '{label_column}' không tồn tại trong DataFrame. "
                f"Các cột hiện có: {df.columns.tolist()}"
            )

        # Tạo mapping nhãn -> số
        label_mapping = {label: idx for idx, label in enumerate(df[label_column].unique())}
        df[label_column] = df[label_column].map(label_mapping)

        X = df["processed_sentence"].tolist()
        y = df[label_column].tolist()
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)

        # Chuyển văn bản thành tensor chỉ số
        X_train_tensors = self.vocabulary.corpus_to_tensor(X_train, is_tokenized=False)
        X_test_tensors  = self.vocabulary.corpus_to_tensor(X_test,  is_tokenized=False)

        # Pad sequences
        X_train_padded = pad_sequences(X_train_tensors, maxlen=maxlen)
        X_test_padded  = pad_sequences(X_test_tensors,  maxlen=maxlen)

        # Debug thông tin
        print(">>> Debug Split and Convert:")
        print("X_train_padded.shape:", X_train_padded.shape)
        print("X_test_padded.shape: ", X_test_padded.shape)
        print("y_train length:", len(y_train))
        print("y_test length: ", len(y_test))

        # Kiểm tra min/max token
        max_token_train = np.max(X_train_padded) if X_train_padded.size > 0 else None
        min_token_train = np.min(X_train_padded) if X_train_padded.size > 0 else None
        max_token_test  = np.max(X_test_padded)  if X_test_padded.size  > 0 else None
        min_token_test  = np.min(X_test_padded)  if X_test_padded.size  > 0 else None

        vocab_size = len(self.vocabulary)
        print(f"vocab_size: {vocab_size}")
        print(f"max_token_train: {max_token_train}, min_token_train: {min_token_train}")
        print(f"max_token_test:  {max_token_test},  min_token_test:  {min_token_test}")

        if for_keras:
            num_classes = len(label_mapping)
            # One-hot cho nhãn
            y_train_onehot = torch.nn.functional.one_hot(torch.tensor(y_train), num_classes=num_classes).numpy()
            y_test_onehot  = torch.nn.functional.one_hot(torch.tensor(y_test),  num_classes=num_classes).numpy()

            # Debug
            print("y_train_onehot.shape:", y_train_onehot.shape)
            print("y_test_onehot.shape: ", y_test_onehot.shape)

            return X_train_padded, X_test_padded, y_train_onehot, y_test_onehot, label_mapping
        else:
            # Trả về DataLoader cho PyTorch
            X_train_tensor = torch.tensor(X_train_padded, dtype=torch.long)
            X_test_tensor  = torch.tensor(X_test_padded,  dtype=torch.long)
            y_train_tensor = torch.tensor(y_train, dtype=torch.long)
            y_test_tensor  = torch.tensor(y_test,  dtype=torch.long)

            train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
            test_dataset  = TensorDataset(X_test_tensor,  y_test_tensor)

            train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
            test_loader  = DataLoader(test_dataset,  batch_size=batch_size, shuffle=False)
            return train_loader, test_loader, label_mapping


# ========== LỚP TỪ ĐIỂN (VOCABULARY) ==========

class Vocabulary:
    def __init__(self):
        self.word2id = {}
        self.word2id['<pad>'] = 0
        self.word2id['<unk>'] = 1
        self.unk_id = self.word2id['<unk>']
        self.id2word = {0: '<pad>', 1: '<unk>'}

    def __getitem__(self, word):
        return self.word2id.get(word, self.unk_id)

    def __contains__(self, word):
        return word in self.word2id

    def __len__(self):
        return len(self.word2id)

    def lookup_tokens(self, word_indexes: list):
        return [self.id2word[word_index] for word_index in word_indexes]

    def add(self, word):
        if word not in self:
            word_index = len(self.word2id)
            self.word2id[word] = word_index
            self.id2word[word_index] = word
            return word_index
        else:
            return self[word]

    @staticmethod
    def tokenize_corpus(corpus):
        tokenized_corpus = []
        for document in tqdm(corpus):
            tokenized_document = [word.replace(" ", "_") for word in word_tokenize(document)]
            tokenized_corpus.append(tokenized_document)
        return tokenized_corpus

    def corpus_to_tensor(self, corpus, is_tokenized=False):
        tokenized_corpus = self.tokenize_corpus(corpus) if not is_tokenized else corpus
        return [
            [self[word] for word in document]
            for document in tokenized_corpus
        ]


# ========== MAPPING EMOJI => NHÃN ==========

emoji_mapping = {
    "😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
    "🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
    "🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
    "😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
    "🤑": "[satisfaction]",
    "🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
    "😏": "[sarcasm]",
    "😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
    "😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
    "😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
    "🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
    "🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
    "😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
    "😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
    "😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
    "😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
    "😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}


# ========== ĐỊNH NGHĨA MÔ HÌNH RNN PYTORCH ==========

class SimpleRNN(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim):
        super(SimpleRNN, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        embedded = self.embedding(x)
        _, (hidden, _) = self.rnn(embedded)
        return self.fc(hidden.squeeze(0))


# ========== HÀM DỰ ĐOÁN VỚI MÔ HÌNH PYTORCH RNN ==========

def predict_emotion_rnn(model, text, data_manager, label_mapping, device):
    model.eval()
    with torch.no_grad():
        processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
        tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
        text_tensor = torch.tensor(
            pad_sequences(data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True), maxlen=400),
            dtype=torch.long
        ).to(device)

        output = model(text_tensor)
        _, predicted = torch.max(output, 1)
        reverse_label_mapping = {v: k for k, v in label_mapping.items()}
        return reverse_label_mapping[predicted.item()]


# ========== HÀM DỰ ĐOÁN VỚI MÔ HÌNH KERAS CNN-LSTM ==========

def predict_emotion_cnn_lstm(model, text, data_manager, label_mapping):
    processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
    tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
    text_tensor = pad_sequences(data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True), maxlen=400)
    output = model.predict(text_tensor)
    predicted = output.argmax(axis=1)[0]
    reverse_label_mapping = {v: k for k, v in label_mapping.items()}
    return reverse_label_mapping[predicted]


# ========== PHẦN MAIN (CHẠY THỬ) ==========

if __name__ == "__main__":
    # --------------------------
    # Thay đường dẫn tại đây:
    # --------------------------
    file_path = "train.xlsx"               # file Excel gốc (chứa cột "Sentence", "Emotion", ...)
    abbreviations_path = "abbreviations.json"
    word2vec_path = "/home/datpham/datpham/thesis-ngtram/word2vec_vi_syllables_100dims.txt"
    output_path = "processed.xlsx"
    
    data_manager = DataManager(
        file_path=file_path,
        abbreviations_path=abbreviations_path,
        word2vec_path=word2vec_path
    )

    # 1) Đọc và tiền xử lý
    df = data_manager.preprocess_data()
    print("Trước khi undersampling:")
    print(df["Emotion"].value_counts())

    # 2) UNDERSAMPLING (Ví dụ)
    # Chỉnh lại tên emotion cụ thể cho phù hợp tập dữ liệu của bạn
    df_enjoyment = df[df["Emotion"] == "Enjoyment"]
    df_other     = df[df["Emotion"] == "Other"]
    df_anger     = df[df["Emotion"] == "Anger"]
    df_sadness   = df[df["Emotion"] == "Sadness"]
    df_disgust   = df[df["Emotion"] == "Disgust"]
    df_fear      = df[df["Emotion"] == "Fear"]
    df_surprise  = df[df["Emotion"] == "Surprise"]

    # Ví dụ: Chọn 2000 mẫu cho 'Enjoyment'
    if len(df_enjoyment) > 2000:
        df_enjoyment_undersampled = df_enjoyment.sample(n=2000, random_state=42)
    else:
        df_enjoyment_undersampled = df_enjoyment
    
    df_balanced = pd.concat([
        df_enjoyment_undersampled,
        df_other,
        df_anger,
        df_sadness,
        df_disgust,
        df_fear,
        df_surprise
    ], axis=0)

    df_balanced = df_balanced.sample(frac=1, random_state=42).reset_index(drop=True)
    df = df_balanced

    print("\nSau khi undersampling:")
    print(df["Emotion"].value_counts())

    df.to_excel(output_path, index=False)

    # 3) Tạo data loader cho PyTorch
    train_loader, test_loader, label_mapping = data_manager.split_and_convert(
        df, label_column="Emotion", for_keras=False
    )

    vocab_size = len(data_manager.vocabulary)
    embedding_dim = 100
    hidden_dim = 128
    output_dim = len(label_mapping)

    model_rnn = SimpleRNN(vocab_size, embedding_dim, hidden_dim, output_dim)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model_rnn.parameters())

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model_rnn.to(device)

    num_epochs = 20
    for epoch in range(num_epochs):
        model_rnn.train()
        epoch_loss = 0
        correct = 0
        total = 0
        for X_batch, y_batch in train_loader:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)

            optimizer.zero_grad()
            predictions = model_rnn(X_batch)
            loss = criterion(predictions, y_batch)
            loss.backward()
            optimizer.step()

            epoch_loss += loss.item()
            _, predicted = torch.max(predictions, 1)
            correct += (predicted == y_batch).sum().item()
            total += y_batch.size(0)

        print(f"Epoch {epoch+1}/{num_epochs}, "
              f"Loss: {epoch_loss/len(train_loader):.4f}, "
              f"Accuracy: {correct/total:.4f}")

    # Đánh giá RNN trên test set
    model_rnn.eval()
    test_loss = 0
    correct = 0
    total = 0
    with torch.no_grad():
        for X_batch, y_batch in test_loader:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            predictions = model_rnn(X_batch)
            loss = criterion(predictions, y_batch)
            test_loss += loss.item()

            _, predicted = torch.max(predictions, 1)
            correct += (predicted == y_batch).sum().item()
            total += y_batch.size(0)

    print(f"Test Loss: {test_loss/len(test_loader):.4f}, "
          f"Test Accuracy: {correct/total:.4f}")


    # ========== CNN-LSTM (Keras) ==========

    from keras.models import Model
    from keras.layers import Input, Embedding, Convolution1D, LSTM, Dense, Dropout, Lambda, concatenate
    from keras.optimizers import Adam
    from keras.callbacks import ModelCheckpoint

    print("Training CNN-LSTM...")

    X_train, X_test, y_train, y_test, label_mapping = data_manager.split_and_convert(
        df, label_column="Emotion", for_keras=True
    )

    maxlen = 400

    input_layer = Input(shape=(maxlen,), dtype='int32', name='main_input')
    emb_layer = Embedding(len(data_manager.vocabulary), embedding_dim)(input_layer)

    def max_1d(X):
        return tf.reduce_max(X, axis=1)

    con3_layer = Convolution1D(150, kernel_size=3, activation='relu')(emb_layer)
    pool_con3_layer = Lambda(max_1d, output_shape=(150,))(con3_layer)

    con5_layer = Convolution1D(150, kernel_size=5, activation='relu')(emb_layer)
    pool_con5_layer = Lambda(max_1d, output_shape=(150,))(con5_layer)

    lstm_layer = LSTM(128)(emb_layer)

    cnn_lstm_layer = concatenate([pool_con3_layer, pool_con5_layer, lstm_layer])

    dense_layer   = Dense(100, activation='relu')(cnn_lstm_layer)
    dropout_layer = Dropout(0.2)(dense_layer)
    output_layer  = Dense(len(label_mapping), activation='softmax')(dropout_layer)

    model_cnn_lstm = Model(inputs=input_layer, outputs=output_layer)
    model_cnn_lstm.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])

    checkpoint = ModelCheckpoint('cnn_lstm_best.keras', save_best_only=True, monitor='val_accuracy', mode='max')
    model_cnn_lstm.fit(
        X_train, y_train,
        validation_data=(X_test, y_test),
        batch_size=32,
        epochs=20,
        callbacks=[checkpoint]
    )

    model_cnn_lstm.save('cnn_lstm_model.keras')

    loss, accuracy = model_cnn_lstm.evaluate(X_test, y_test)
    print(f"CNN-LSTM Test Loss: {loss:.4f}, Test Accuracy: {accuracy:.4f}")

    # Demo dự đoán 1 câu mới
    custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"

    # RNN (PyTorch)
    emotion_rnn = predict_emotion_rnn(model_rnn, custom_text, data_manager, label_mapping, device)
    print(f"Predicted Emotion (RNN): {emotion_rnn}")

    # CNN-LSTM (Keras)
    cnn_lstm_model = tf.keras.models.load_model('cnn_lstm_model.keras')
    emotion_cnn_lstm = predict_emotion_cnn_lstm(cnn_lstm_model, custom_text, data_manager, label_mapping)
    print(f"Predicted Emotion (CNN-LSTM): {emotion_cnn_lstm}")

    # Kiểm tra phiên bản TF, GPU
    print("TF version:", tf.__version__)
    print("GPU devices:", tf.config.list_physical_devices("GPU"))
    # Có thể kiểm tra CUDA/GPU thông qua lệnh system sau (nếu muốn):
    # import os
    # os.system("nvidia-smi")