File size: 19,520 Bytes
e09333c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# thesis.py
# -*- coding: utf-8 -*-
import pandas as pd
import emoji
import json
import re
from underthesea import word_tokenize
from tqdm import tqdm
import torch
from torchtext.vocab import Vectors
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.sequence import pad_sequences
from torch.utils.data import DataLoader, TensorDataset
import torch.nn as nn
import torch.optim as optim
import numpy as np
import tensorflow as tf
# ========== CÁC HÀM TIỀN XỬ LÝ ==========
def preprocess_sentence(sentence, abbreviations, emoji_mapping):
"""
Tiền xử lý 1 câu: chuyển thường, thay thế emoji, xóa từ thô tục,
ký tự đặc biệt, chuẩn hóa khoảng trắng, v.v.
"""
sentence = sentence.lower()
sentence = replace_emojis(sentence, emoji_mapping)
sentence = remove_profanity(sentence)
sentence = remove_special_characters(sentence)
sentence = normalize_whitespace(sentence)
sentence = replace_abbreviations(sentence, abbreviations)
sentence = remove_repeated_characters(sentence)
sentence = replace_numbers(sentence)
sentence = tokenize_sentence(sentence)
return sentence
def replace_emojis(sentence, emoji_mapping):
processed_sentence = []
for char in sentence:
if char in emoji_mapping:
processed_sentence.append(emoji_mapping[char])
elif not emoji.is_emoji(char):
processed_sentence.append(char)
return ''.join(processed_sentence)
def remove_profanity(sentence):
profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
words = sentence.split()
filtered_words = [word for word in words if word.lower() not in profane_words]
return ' '.join(filtered_words)
def remove_special_characters(sentence):
return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)
def normalize_whitespace(sentence):
return ' '.join(sentence.split())
def replace_abbreviations(sentence, abbreviations):
words = sentence.split()
replaced_words = [
" ".join(abbreviations[word]) if word in abbreviations else word
for word in words
]
return ' '.join(replaced_words)
def remove_repeated_characters(sentence):
return re.sub(r"(.)\1{2,}", r"\1", sentence)
def replace_numbers(sentence):
return re.sub(r"\d+", "[number]", sentence)
def tokenize_sentence(sentence):
return ' '.join(word_tokenize(sentence))
# ========== LỚP DATA MANAGER ==========
class DataManager:
def __init__(self, file_path, abbreviations_path, word2vec_path):
self.file_path = file_path
self.abbreviations_path = abbreviations_path
self.word2vec_path = word2vec_path
self.load_abbreviations()
self.load_word2vec()
def load_abbreviations(self):
with open(self.abbreviations_path, "r", encoding="utf-8") as file:
self.abbreviations = json.load(file)
def load_word2vec(self):
# Tải vector từ file word2vec, unk_init để từ vựng ngoài tập sẽ random normal
self.word_embeddings = Vectors(name=self.word2vec_path, unk_init=torch.Tensor.normal_)
self.vocabulary = self.create_vocab_from_word2vec()
def create_vocab_from_word2vec(self):
vocab = Vocabulary()
words_list = list(self.word_embeddings.stoi.keys())
for word in words_list:
vocab.add(word)
return vocab
def preprocess_data(self):
df = pd.read_excel(self.file_path)
if "Sentence" not in df.columns:
raise ValueError("Cột 'Sentence' không tồn tại trong dataset!")
# Tiền xử lý từng câu
df["processed_sentence"] = df["Sentence"].apply(
lambda x: preprocess_sentence(str(x), self.abbreviations, emoji_mapping)
)
# Loại bỏ những dòng rỗng sau khi xử lý
df = df[df["processed_sentence"].str.strip().astype(bool)]
return df
def split_and_convert(
self, df, label_column="Emotion", maxlen=400, test_size=0.2,
for_keras=False, batch_size=32
):
"""
Chia dữ liệu thành train/test. Trả về:
- Nếu for_keras=False: train_loader, test_loader, label_mapping (PyTorch)
- Nếu for_keras=True: X_train, X_test, y_train_onehot, y_test_onehot, label_mapping (Keras)
"""
if label_column not in df.columns:
raise ValueError(
f"Cột '{label_column}' không tồn tại trong DataFrame. "
f"Các cột hiện có: {df.columns.tolist()}"
)
# Tạo mapping nhãn -> số
label_mapping = {label: idx for idx, label in enumerate(df[label_column].unique())}
df[label_column] = df[label_column].map(label_mapping)
X = df["processed_sentence"].tolist()
y = df[label_column].tolist()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
# Chuyển văn bản thành tensor chỉ số
X_train_tensors = self.vocabulary.corpus_to_tensor(X_train, is_tokenized=False)
X_test_tensors = self.vocabulary.corpus_to_tensor(X_test, is_tokenized=False)
# Pad sequences
X_train_padded = pad_sequences(X_train_tensors, maxlen=maxlen)
X_test_padded = pad_sequences(X_test_tensors, maxlen=maxlen)
# Debug thông tin
print(">>> Debug Split and Convert:")
print("X_train_padded.shape:", X_train_padded.shape)
print("X_test_padded.shape: ", X_test_padded.shape)
print("y_train length:", len(y_train))
print("y_test length: ", len(y_test))
# Kiểm tra min/max token
max_token_train = np.max(X_train_padded) if X_train_padded.size > 0 else None
min_token_train = np.min(X_train_padded) if X_train_padded.size > 0 else None
max_token_test = np.max(X_test_padded) if X_test_padded.size > 0 else None
min_token_test = np.min(X_test_padded) if X_test_padded.size > 0 else None
vocab_size = len(self.vocabulary)
print(f"vocab_size: {vocab_size}")
print(f"max_token_train: {max_token_train}, min_token_train: {min_token_train}")
print(f"max_token_test: {max_token_test}, min_token_test: {min_token_test}")
if for_keras:
num_classes = len(label_mapping)
# One-hot cho nhãn
y_train_onehot = torch.nn.functional.one_hot(torch.tensor(y_train), num_classes=num_classes).numpy()
y_test_onehot = torch.nn.functional.one_hot(torch.tensor(y_test), num_classes=num_classes).numpy()
# Debug
print("y_train_onehot.shape:", y_train_onehot.shape)
print("y_test_onehot.shape: ", y_test_onehot.shape)
return X_train_padded, X_test_padded, y_train_onehot, y_test_onehot, label_mapping
else:
# Trả về DataLoader cho PyTorch
X_train_tensor = torch.tensor(X_train_padded, dtype=torch.long)
X_test_tensor = torch.tensor(X_test_padded, dtype=torch.long)
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
y_test_tensor = torch.tensor(y_test, dtype=torch.long)
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
return train_loader, test_loader, label_mapping
# ========== LỚP TỪ ĐIỂN (VOCABULARY) ==========
class Vocabulary:
def __init__(self):
self.word2id = {}
self.word2id['<pad>'] = 0
self.word2id['<unk>'] = 1
self.unk_id = self.word2id['<unk>']
self.id2word = {0: '<pad>', 1: '<unk>'}
def __getitem__(self, word):
return self.word2id.get(word, self.unk_id)
def __contains__(self, word):
return word in self.word2id
def __len__(self):
return len(self.word2id)
def lookup_tokens(self, word_indexes: list):
return [self.id2word[word_index] for word_index in word_indexes]
def add(self, word):
if word not in self:
word_index = len(self.word2id)
self.word2id[word] = word_index
self.id2word[word_index] = word
return word_index
else:
return self[word]
@staticmethod
def tokenize_corpus(corpus):
tokenized_corpus = []
for document in tqdm(corpus):
tokenized_document = [word.replace(" ", "_") for word in word_tokenize(document)]
tokenized_corpus.append(tokenized_document)
return tokenized_corpus
def corpus_to_tensor(self, corpus, is_tokenized=False):
tokenized_corpus = self.tokenize_corpus(corpus) if not is_tokenized else corpus
return [
[self[word] for word in document]
for document in tokenized_corpus
]
# ========== MAPPING EMOJI => NHÃN ==========
emoji_mapping = {
"😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
"🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
"🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
"😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
"🤑": "[satisfaction]",
"🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
"😏": "[sarcasm]",
"😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
"😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
"😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
"🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
"🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
"😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
"😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
"😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
"😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
"😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}
# ========== ĐỊNH NGHĨA MÔ HÌNH RNN PYTORCH ==========
class SimpleRNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim):
super(SimpleRNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.rnn = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
embedded = self.embedding(x)
_, (hidden, _) = self.rnn(embedded)
return self.fc(hidden.squeeze(0))
# ========== HÀM DỰ ĐOÁN VỚI MÔ HÌNH PYTORCH RNN ==========
def predict_emotion_rnn(model, text, data_manager, label_mapping, device):
model.eval()
with torch.no_grad():
processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
text_tensor = torch.tensor(
pad_sequences(data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True), maxlen=400),
dtype=torch.long
).to(device)
output = model(text_tensor)
_, predicted = torch.max(output, 1)
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
return reverse_label_mapping[predicted.item()]
# ========== HÀM DỰ ĐOÁN VỚI MÔ HÌNH KERAS CNN-LSTM ==========
def predict_emotion_cnn_lstm(model, text, data_manager, label_mapping):
processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
text_tensor = pad_sequences(data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True), maxlen=400)
output = model.predict(text_tensor)
predicted = output.argmax(axis=1)[0]
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
return reverse_label_mapping[predicted]
# ========== PHẦN MAIN (CHẠY THỬ) ==========
if __name__ == "__main__":
# --------------------------
# Thay đường dẫn tại đây:
# --------------------------
file_path = "train.xlsx" # file Excel gốc (chứa cột "Sentence", "Emotion", ...)
abbreviations_path = "abbreviations.json"
word2vec_path = "/home/datpham/datpham/thesis-ngtram/word2vec_vi_syllables_100dims.txt"
output_path = "processed.xlsx"
data_manager = DataManager(
file_path=file_path,
abbreviations_path=abbreviations_path,
word2vec_path=word2vec_path
)
# 1) Đọc và tiền xử lý
df = data_manager.preprocess_data()
print("Trước khi undersampling:")
print(df["Emotion"].value_counts())
# 2) UNDERSAMPLING (Ví dụ)
# Chỉnh lại tên emotion cụ thể cho phù hợp tập dữ liệu của bạn
df_enjoyment = df[df["Emotion"] == "Enjoyment"]
df_other = df[df["Emotion"] == "Other"]
df_anger = df[df["Emotion"] == "Anger"]
df_sadness = df[df["Emotion"] == "Sadness"]
df_disgust = df[df["Emotion"] == "Disgust"]
df_fear = df[df["Emotion"] == "Fear"]
df_surprise = df[df["Emotion"] == "Surprise"]
# Ví dụ: Chọn 2000 mẫu cho 'Enjoyment'
if len(df_enjoyment) > 2000:
df_enjoyment_undersampled = df_enjoyment.sample(n=2000, random_state=42)
else:
df_enjoyment_undersampled = df_enjoyment
df_balanced = pd.concat([
df_enjoyment_undersampled,
df_other,
df_anger,
df_sadness,
df_disgust,
df_fear,
df_surprise
], axis=0)
df_balanced = df_balanced.sample(frac=1, random_state=42).reset_index(drop=True)
df = df_balanced
print("\nSau khi undersampling:")
print(df["Emotion"].value_counts())
df.to_excel(output_path, index=False)
# 3) Tạo data loader cho PyTorch
train_loader, test_loader, label_mapping = data_manager.split_and_convert(
df, label_column="Emotion", for_keras=False
)
vocab_size = len(data_manager.vocabulary)
embedding_dim = 100
hidden_dim = 128
output_dim = len(label_mapping)
model_rnn = SimpleRNN(vocab_size, embedding_dim, hidden_dim, output_dim)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model_rnn.parameters())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_rnn.to(device)
num_epochs = 20
for epoch in range(num_epochs):
model_rnn.train()
epoch_loss = 0
correct = 0
total = 0
for X_batch, y_batch in train_loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
optimizer.zero_grad()
predictions = model_rnn(X_batch)
loss = criterion(predictions, y_batch)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
_, predicted = torch.max(predictions, 1)
correct += (predicted == y_batch).sum().item()
total += y_batch.size(0)
print(f"Epoch {epoch+1}/{num_epochs}, "
f"Loss: {epoch_loss/len(train_loader):.4f}, "
f"Accuracy: {correct/total:.4f}")
# Đánh giá RNN trên test set
model_rnn.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for X_batch, y_batch in test_loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
predictions = model_rnn(X_batch)
loss = criterion(predictions, y_batch)
test_loss += loss.item()
_, predicted = torch.max(predictions, 1)
correct += (predicted == y_batch).sum().item()
total += y_batch.size(0)
print(f"Test Loss: {test_loss/len(test_loader):.4f}, "
f"Test Accuracy: {correct/total:.4f}")
# ========== CNN-LSTM (Keras) ==========
from keras.models import Model
from keras.layers import Input, Embedding, Convolution1D, LSTM, Dense, Dropout, Lambda, concatenate
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
print("Training CNN-LSTM...")
X_train, X_test, y_train, y_test, label_mapping = data_manager.split_and_convert(
df, label_column="Emotion", for_keras=True
)
maxlen = 400
input_layer = Input(shape=(maxlen,), dtype='int32', name='main_input')
emb_layer = Embedding(len(data_manager.vocabulary), embedding_dim)(input_layer)
def max_1d(X):
return tf.reduce_max(X, axis=1)
con3_layer = Convolution1D(150, kernel_size=3, activation='relu')(emb_layer)
pool_con3_layer = Lambda(max_1d, output_shape=(150,))(con3_layer)
con5_layer = Convolution1D(150, kernel_size=5, activation='relu')(emb_layer)
pool_con5_layer = Lambda(max_1d, output_shape=(150,))(con5_layer)
lstm_layer = LSTM(128)(emb_layer)
cnn_lstm_layer = concatenate([pool_con3_layer, pool_con5_layer, lstm_layer])
dense_layer = Dense(100, activation='relu')(cnn_lstm_layer)
dropout_layer = Dropout(0.2)(dense_layer)
output_layer = Dense(len(label_mapping), activation='softmax')(dropout_layer)
model_cnn_lstm = Model(inputs=input_layer, outputs=output_layer)
model_cnn_lstm.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])
checkpoint = ModelCheckpoint('cnn_lstm_best.keras', save_best_only=True, monitor='val_accuracy', mode='max')
model_cnn_lstm.fit(
X_train, y_train,
validation_data=(X_test, y_test),
batch_size=32,
epochs=20,
callbacks=[checkpoint]
)
model_cnn_lstm.save('cnn_lstm_model.keras')
loss, accuracy = model_cnn_lstm.evaluate(X_test, y_test)
print(f"CNN-LSTM Test Loss: {loss:.4f}, Test Accuracy: {accuracy:.4f}")
# Demo dự đoán 1 câu mới
custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"
# RNN (PyTorch)
emotion_rnn = predict_emotion_rnn(model_rnn, custom_text, data_manager, label_mapping, device)
print(f"Predicted Emotion (RNN): {emotion_rnn}")
# CNN-LSTM (Keras)
cnn_lstm_model = tf.keras.models.load_model('cnn_lstm_model.keras')
emotion_cnn_lstm = predict_emotion_cnn_lstm(cnn_lstm_model, custom_text, data_manager, label_mapping)
print(f"Predicted Emotion (CNN-LSTM): {emotion_cnn_lstm}")
# Kiểm tra phiên bản TF, GPU
print("TF version:", tf.__version__)
print("GPU devices:", tf.config.list_physical_devices("GPU"))
# Có thể kiểm tra CUDA/GPU thông qua lệnh system sau (nếu muốn):
# import os
# os.system("nvidia-smi")
|