emotion-classification-v1 / main_RNN_CNN-LSTM.py
ducdatit2002's picture
Upload folder using huggingface_hub
e09333c verified
raw
history blame
29.2 kB
# thesis.py
# -*- coding: utf-8 -*-
import pandas as pd
import emoji
import json
import re
import numpy as np
from underthesea import word_tokenize
from tqdm import tqdm
import torch
from torchtext.vocab import Vectors
from sklearn.model_selection import train_test_split
from sklearn.utils import resample
from sklearn.metrics import (
accuracy_score,
classification_report,
precision_score,
recall_score,
f1_score,
confusion_matrix
)
from tensorflow.keras.preprocessing.sequence import pad_sequences
from torch.utils.data import DataLoader, TensorDataset
import torch.nn as nn
import torch.optim as optim
import tensorflow as tf
import os
import joblib
# ========== CÁC HÀM TIỀN XỬ LÝ ==========
def preprocess_sentence(sentence, abbreviations, emoji_mapping):
"""
Tiền xử lý 1 câu: chuyển thường, thay thế emoji, xóa từ thô tục,
ký tự đặc biệt, chuẩn hóa khoảng trắng, v.v.
"""
sentence = sentence.lower()
sentence = replace_emojis(sentence, emoji_mapping)
sentence = remove_profanity(sentence)
sentence = remove_special_characters(sentence)
sentence = normalize_whitespace(sentence)
sentence = replace_abbreviations(sentence, abbreviations)
sentence = remove_repeated_characters(sentence)
sentence = replace_numbers(sentence)
sentence = tokenize_sentence(sentence)
return sentence
def replace_emojis(sentence, emoji_mapping):
processed_sentence = []
for char in sentence:
if char in emoji_mapping:
processed_sentence.append(emoji_mapping[char])
elif not emoji.is_emoji(char):
processed_sentence.append(char)
return ''.join(processed_sentence)
def remove_profanity(sentence):
profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
words = sentence.split()
filtered_words = [word for word in words if word.lower() not in profane_words]
return ' '.join(filtered_words)
def remove_special_characters(sentence):
return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)
def normalize_whitespace(sentence):
return ' '.join(sentence.split())
def replace_abbreviations(sentence, abbreviations):
words = sentence.split()
replaced_words = [
" ".join(abbreviations[word]) if word in abbreviations else word
for word in words
]
return ' '.join(replaced_words)
def remove_repeated_characters(sentence):
# Ví dụ: "đẹp quáaaaaaa" -> "đẹp quá"
return re.sub(r"(.)\1{2,}", r"\1", sentence)
def replace_numbers(sentence):
# Thay toàn bộ số bằng token [number]
return re.sub(r"\d+", "[number]", sentence)
def tokenize_sentence(sentence):
# Tách từ bằng underthesea
return ' '.join(word_tokenize(sentence))
# ========== VOCABULARY CLASS ==========
class Vocabulary:
def __init__(self):
self.word2id = {}
self.word2id['<pad>'] = 0
self.word2id['<unk>'] = 1
self.unk_id = 1
self.id2word = {0: '<pad>', 1: '<unk>'}
def __getitem__(self, word):
return self.word2id.get(word, self.unk_id)
def __contains__(self, word):
return word in self.word2id
def __len__(self):
return len(self.word2id)
def lookup_tokens(self, indices):
return [self.id2word[idx] for idx in indices]
def add(self, word):
if word not in self.word2id:
idx = len(self.word2id)
self.word2id[word] = idx
self.id2word[idx] = word
@staticmethod
def tokenize_corpus(corpus):
tokenized_corpus = []
for doc in tqdm(corpus, desc="Tokenizing Corpus"):
tokens = [w.replace(" ", "_") for w in word_tokenize(doc)]
tokenized_corpus.append(tokens)
return tokenized_corpus
def corpus_to_tensor(self, corpus, is_tokenized=False):
"""
corpus: list các câu (chuỗi) hoặc list các list từ (nếu is_tokenized=True)
return: list[list[int]], mỗi câu là 1 list gồm các chỉ số token
"""
tokenized_corpus = (
self.tokenize_corpus(corpus) if not is_tokenized else corpus
)
return [
[self[token] for token in doc]
for doc in tokenized_corpus
]
# ========== EMOJI MAPPING ==========
emoji_mapping = {
"😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
"🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
"🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
"😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
"🤑": "[satisfaction]",
"🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
"😏": "[sarcasm]",
"😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
"😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
"😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
"🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
"🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
"😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
"😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
"😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
"😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
"😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}
def load_abbreviations(path):
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
# ========== DATA MANAGER ==========
class DataManager:
def __init__(self, file_path, abbreviations_path, word2vec_path):
self.file_path = file_path
self.abbreviations_path = abbreviations_path
self.word2vec_path = word2vec_path
self.vocabulary = None
self.word_embeddings = None
self.abbreviations = None
self.load_abbreviations()
def load_abbreviations(self):
with open(self.abbreviations_path, "r", encoding="utf-8") as f:
self.abbreviations = json.load(f)
def load_word2vec(self):
"""
Tải vector từ file word2vec,
dùng torchtext.Vectors để load embedding pretrained.
"""
self.word_embeddings = Vectors(
name=self.word2vec_path,
unk_init=torch.Tensor.normal_
)
def create_vocab_from_corpus(self, corpus, max_vocab_size=30000):
"""
Tạo vocabulary từ corpus, chỉ lấy top max_vocab_size từ.
"""
vocab = Vocabulary()
from collections import Counter
counter = Counter()
for sent in corpus:
for token in sent.split():
counter[token] += 1
most_common = counter.most_common(max_vocab_size)
for word, _freq in most_common:
vocab.add(word)
return vocab
def preprocess_data(self):
df = pd.read_excel(self.file_path)
if "Sentence" not in df.columns:
raise ValueError("Cột 'Sentence' không tồn tại trong dataset!")
# Tiền xử lý từng câu
df["processed_sentence"] = df["Sentence"].apply(
lambda x: preprocess_sentence(str(x), self.abbreviations, emoji_mapping)
)
# Loại những dòng rỗng
df = df[df["processed_sentence"].str.strip().astype(bool)]
# Tạo vocab từ chính dữ liệu
all_sentences = df["processed_sentence"].tolist()
self.vocabulary = self.create_vocab_from_corpus(all_sentences, max_vocab_size=30000)
# Load word2vec
self.load_word2vec()
return df
def build_pretrained_embedding_matrix(self, embedding_dim=100):
"""
Tạo weight_matrix (numpy) (vocab_size x embedding_dim)
với trọng số pretrained.
"""
vocab_size = len(self.vocabulary)
weight_matrix = np.random.normal(
scale=0.1, size=(vocab_size, embedding_dim)
).astype(np.float32)
# Copy vector pretrained
for word, idx in self.vocabulary.word2id.items():
if word in self.word_embeddings.stoi:
weight_matrix[idx] = self.word_embeddings.vectors[
self.word_embeddings.stoi[word]
]
return weight_matrix
def split_and_convert(
self, df, label_column="Emotion", maxlen=400, test_size=0.2,
for_keras=False, batch_size=32
):
"""
Chia dữ liệu thành train/test.
- for_keras=False → return train_loader, test_loader, label_mapping (PyTorch)
- for_keras=True → return X_train, X_test, y_train_onehot, y_test_onehot, label_mapping (Keras)
"""
if label_column not in df.columns:
raise ValueError(
f"Cột '{label_column}' không tồn tại. Hiện có: {df.columns.tolist()}"
)
# Tạo mapping nhãn -> số
label_mapping = {label: idx for idx, label in enumerate(df[label_column].unique())}
df[label_column] = df[label_column].map(label_mapping)
if df[label_column].isnull().any():
missing = df[df[label_column].isnull()][label_column].unique()
raise ValueError(f"Những nhãn cảm xúc sau không có trong label_mapping: {missing}")
X = df["processed_sentence"].tolist()
y = df[label_column].tolist()
# Stratify to maintain class distribution
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, random_state=42, stratify=y
)
# Convert text -> index
X_train_ids = self.vocabulary.corpus_to_tensor(X_train, is_tokenized=False)
X_test_ids = self.vocabulary.corpus_to_tensor(X_test, is_tokenized=False)
# Pad
X_train_padded = pad_sequences(X_train_ids, maxlen=maxlen, padding='post', truncating='post')
X_test_padded = pad_sequences(X_test_ids, maxlen=maxlen, padding='post', truncating='post')
print(">>> Debug Split and Convert:")
print("X_train_padded.shape:", X_train_padded.shape)
print("X_test_padded.shape: ", X_test_padded.shape)
print("y_train length:", len(y_train))
print("y_test length: ", len(y_test))
print("vocab_size:", len(self.vocabulary))
if for_keras:
num_classes = len(label_mapping)
y_train_onehot = torch.nn.functional.one_hot(
torch.tensor(y_train),
num_classes=num_classes
).numpy()
y_test_onehot = torch.nn.functional.one_hot(
torch.tensor(y_test),
num_classes=num_classes
).numpy()
print("y_train_onehot.shape:", y_train_onehot.shape)
print("y_test_onehot.shape: ", y_test_onehot.shape)
return X_train_padded, X_test_padded, y_train_onehot, y_test_onehot, label_mapping
else:
# Trả về DataLoader
X_train_t = torch.tensor(X_train_padded, dtype=torch.long)
X_test_t = torch.tensor(X_test_padded, dtype=torch.long)
y_train_t = torch.tensor(y_train, dtype=torch.long)
y_test_t = torch.tensor(y_test, dtype=torch.long)
train_ds = TensorDataset(X_train_t, y_train_t)
test_ds = TensorDataset(X_test_t, y_test_t)
train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_ds, batch_size=batch_size, shuffle=False)
return train_loader, test_loader, label_mapping
# ========== MÔ HÌNH PYTORCH RNN ==========
class SimpleRNN(nn.Module):
def __init__(self, pretrained_weight, hidden_dim, output_dim, dropout=0.3):
super(SimpleRNN, self).__init__()
vocab_size, embedding_dim = pretrained_weight.shape
# Tạo nn.Embedding từ pretrained_weight
self.embedding = nn.Embedding.from_pretrained(
torch.from_numpy(pretrained_weight),
freeze=False # True nếu muốn cố định embedding
)
self.rnn = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
embedded = self.dropout(self.embedding(x))
_, (hidden, _) = self.rnn(embedded)
hidden = self.dropout(hidden.squeeze(0))
output = self.fc(hidden)
return output
def predict_emotion_rnn(model, text, data_manager, label_mapping, device):
model.eval()
with torch.no_grad():
processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
text_ids = data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True)
text_padded = pad_sequences(text_ids, maxlen=400, padding='post', truncating='post')
text_tensor = torch.tensor(
text_padded,
dtype=torch.long
).to(device)
output = model(text_tensor)
_, predicted = torch.max(output, 1)
rev_map = {v: k for k, v in label_mapping.items()}
return rev_map[predicted.item()]
# ========== MÔ HÌNH KERAS CNN-LSTM ==========
def predict_emotion_cnn_lstm(model, text, data_manager, label_mapping):
processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
text_ids = data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True)
text_padded = pad_sequences(text_ids, maxlen=400, padding='post', truncating='post')
output = model.predict(text_padded)
pred = output.argmax(axis=1)[0]
rev_map = {v: k for k, v in label_mapping.items()}
return rev_map[pred]
# ========== MAIN ==========
if __name__ == "__main__":
from keras.models import Model
from keras.layers import (
Input, Embedding, Convolution1D, LSTM, Dense, Dropout, Lambda, concatenate
)
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping
# -------- ĐƯỜNG DẪN ----------
file_path = "train.xlsx"
abbreviations_path = "abbreviations.json"
word2vec_path = "word2vec_vi_syllables_100dims.txt"
output_path = "processed.xlsx"
# Khởi tạo DataManager
data_manager = DataManager(
file_path=file_path,
abbreviations_path=abbreviations_path,
word2vec_path=word2vec_path
)
# 1) Tiền xử lý, tạo vocab, load word2vec
df = data_manager.preprocess_data()
print("Trước khi cân bằng lớp (undersampling/oversampling):")
print(df["Emotion"].value_counts())
# 2) Cân bằng lớp dữ liệu (Ví dụ: Oversample 'Other' lên 3000)
# Bạn có thể điều chỉnh theo nhu cầu của mình
df_enjoyment = df[df["Emotion"] == "Enjoyment"]
df_other = df[df["Emotion"] == "Other"]
df_anger = df[df["Emotion"] == "Anger"]
df_sadness = df[df["Emotion"] == "Sadness"]
df_disgust = df[df["Emotion"] == "Disgust"]
df_fear = df[df["Emotion"] == "Fear"]
df_surprise = df[df["Emotion"] == "Surprise"]
# Oversample lớp 'Other' lên 3000 (chỉ minh hoạ)
if len(df_other) < 3000:
df_other_oversampled = resample(
df_other,
replace=True,
n_samples=3000,
random_state=42
)
else:
df_other_oversampled = df_other
# Giữ nguyên các lớp khác (hoặc oversample tùy ý)
df_balanced = pd.concat([
df_enjoyment,
df_other_oversampled,
df_anger,
df_sadness,
df_disgust,
df_fear,
df_surprise
], axis=0)
df_balanced = df_balanced.sample(frac=1, random_state=42).reset_index(drop=True)
df = df_balanced
print("\nSau khi cân bằng lớp (demo oversample):")
print(df["Emotion"].value_counts())
# Xuất file (nếu muốn)
df.to_excel(output_path, index=False)
# ========== TRAIN RNN PYTORCH ==========
print("\n========== Training PyTorch SimpleRNN ==========")
# Xây ma trận embedding pretrained
pretrained_matrix = data_manager.build_pretrained_embedding_matrix(embedding_dim=100)
# Chia và chuyển đổi dữ liệu thành DataLoader
train_loader, test_loader, label_mapping = data_manager.split_and_convert(
df, label_column="Emotion", maxlen=400, test_size=0.2,
for_keras=False, batch_size=32
)
hidden_dim = 128
output_dim = len(label_mapping)
model_rnn = SimpleRNN(pretrained_weight=pretrained_matrix,
hidden_dim=hidden_dim,
output_dim=output_dim,
dropout=0.3)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model_rnn.parameters(), lr=1e-3)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_rnn.to(device)
num_epochs = 20
for epoch in range(num_epochs):
model_rnn.train()
epoch_loss = 0
correct = 0
total = 0
for X_batch, y_batch in train_loader:
X_batch = X_batch.to(device)
y_batch = y_batch.to(device)
optimizer.zero_grad()
preds = model_rnn(X_batch)
loss = criterion(preds, y_batch)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
_, pred_label = torch.max(preds, 1)
correct += (pred_label == y_batch).sum().item()
total += y_batch.size(0)
epoch_accuracy = correct / total
epoch_loss_avg = epoch_loss / len(train_loader)
print(f"Epoch {epoch+1}/{num_epochs}, "
f"Loss: {epoch_loss_avg:.4f}, "
f"Accuracy: {epoch_accuracy:.4f}")
# Đánh giá trên test set với detailed metrics
model_rnn.eval()
test_loss = 0
correct = 0
total = 0
y_true = []
y_pred = []
with torch.no_grad():
for X_batch, y_batch in test_loader:
X_batch = X_batch.to(device)
y_batch = y_batch.to(device)
preds = model_rnn(X_batch)
loss = criterion(preds, y_batch)
test_loss += loss.item()
_, predicted = torch.max(preds, 1)
correct += (predicted == y_batch).sum().item()
total += y_batch.size(0)
y_true.extend(y_batch.cpu().numpy())
y_pred.extend(predicted.cpu().numpy())
test_accuracy = accuracy_score(y_true, y_pred)
test_loss_avg = test_loss / len(test_loader)
precision_macro = precision_score(y_true, y_pred, average='macro', zero_division=0)
precision_weighted = precision_score(y_true, y_pred, average='weighted', zero_division=0)
recall_macro = recall_score(y_true, y_pred, average='macro', zero_division=0)
recall_weighted = recall_score(y_true, y_pred, average='weighted', zero_division=0)
f1_macro = f1_score(y_true, y_pred, average='macro', zero_division=0)
f1_weighted = f1_score(y_true, y_pred, average='weighted', zero_division=0)
report = classification_report(y_true, y_pred, target_names=label_mapping.keys(), digits=4)
conf_matrix = confusion_matrix(y_true, y_pred)
# In các chỉ số
print(f"\nTest Loss: {test_loss_avg:.4f}, Test Accuracy: {test_accuracy:.4f}")
print(f"Precision (Macro): {precision_macro:.4f}")
print(f"Precision (Weighted): {precision_weighted:.4f}")
print(f"Recall (Macro): {recall_macro:.4f}")
print(f"Recall (Weighted): {recall_weighted:.4f}")
print(f"F1-Score (Macro): {f1_macro:.4f}")
print(f"F1-Score (Weighted): {f1_weighted:.4f}")
print("\n========== Classification Report ==========")
print(report)
print("\n========== Confusion Matrix ==========")
print(conf_matrix)
# Lưu báo cáo vào file
rnn_report_dir = "rnn_emotion_model"
os.makedirs(rnn_report_dir, exist_ok=True)
with open(os.path.join(rnn_report_dir, "classification_report.txt"), "w", encoding="utf-8") as f:
f.write("========== Classification Report ==========\n")
f.write(report)
f.write("\n========== Additional Metrics ==========\n")
f.write(f"Test Loss: {test_loss_avg:.4f}\n")
f.write(f"Test Accuracy: {test_accuracy:.4f}\n")
f.write(f"Precision (Macro): {precision_macro:.4f}\n")
f.write(f"Precision (Weighted): {precision_weighted:.4f}\n")
f.write(f"Recall (Macro): {recall_macro:.4f}\n")
f.write(f"Recall (Weighted): {recall_weighted:.4f}\n")
f.write(f"F1-Score (Macro): {f1_macro:.4f}\n")
f.write(f"F1-Score (Weighted): {f1_weighted:.4f}\n")
f.write("\n========== Confusion Matrix ==========\n")
f.write(np.array2string(conf_matrix))
print("\n========== Classification Report saved to 'rnn_emotion_model/classification_report.txt' ==========")
# Lưu mô hình RNN
torch.save(model_rnn.state_dict(), os.path.join(rnn_report_dir, "simple_rnn.pth"))
print("========== RNN Model saved to 'rnn_emotion_model/simple_rnn.pth' ==========")
# ========== TRAIN CNN-LSTM KERAS ==========
print("\n========== Training CNN-LSTM (Keras) ==========")
# Tạo embedding pretrained cho Keras
# Chúng ta có pretrained_matrix (num_vocab x 100)
# Sẽ truyền vào layer Embedding(..., weights=[...])
X_train_keras, X_test_keras, y_train_keras, y_test_keras, label_mapping_keras = data_manager.split_and_convert(
df, label_column="Emotion", maxlen=400, test_size=0.2,
for_keras=True
)
maxlen = 400
vocab_size, embedding_dim = pretrained_matrix.shape
# Chuyển pretrained_matrix -> float32 (đảm bảo Keras nhận dạng)
pretrained_matrix_keras = pretrained_matrix.astype(np.float32)
input_layer = Input(shape=(maxlen,), dtype='int32', name='main_input')
emb_layer = Embedding(
input_dim=vocab_size,
output_dim=embedding_dim,
weights=[pretrained_matrix_keras],
trainable=True # True hoặc False tùy muốn fine-tune embedding
)(input_layer)
def max_1d(X):
return tf.reduce_max(X, axis=1)
con3 = Convolution1D(150, kernel_size=3, activation='relu')(emb_layer)
pool_con3 = Lambda(max_1d, output_shape=(150,))(con3)
con5 = Convolution1D(150, kernel_size=5, activation='relu')(emb_layer)
pool_con5 = Lambda(max_1d, output_shape=(150,))(con5)
lstm_out = LSTM(128, dropout=0.3)(emb_layer)
merged = concatenate([pool_con3, pool_con5, lstm_out])
dense = Dense(100, activation='relu')(merged)
drop = Dropout(0.3)(dense)
output = Dense(output_dim, activation='softmax')(drop)
model_cnn_lstm = Model(inputs=input_layer, outputs=output)
model_cnn_lstm.compile(
loss='categorical_crossentropy',
optimizer=Adam(lr=1e-3),
metrics=['accuracy']
)
checkpoint = ModelCheckpoint(
'cnn_lstm_best.keras',
save_best_only=True,
monitor='val_accuracy',
mode='max'
)
early_stopping = EarlyStopping(
monitor='val_accuracy',
patience=5,
restore_best_weights=True
)
history = model_cnn_lstm.fit(
X_train_keras, y_train_keras,
validation_data=(X_test_keras, y_test_keras),
epochs=30,
batch_size=32,
callbacks=[checkpoint, early_stopping]
)
# Đánh giá trên test set với detailed metrics
loss, acc = model_cnn_lstm.evaluate(X_test_keras, y_test_keras)
print(f"CNN-LSTM Test Loss: {loss:.4f}, Test Accuracy: {acc:.4f}")
# Thu thập dự đoán và tính toán các chỉ số
y_pred_cnn_lstm = model_cnn_lstm.predict(X_test_keras)
y_pred_cnn_lstm = np.argmax(y_pred_cnn_lstm, axis=1)
y_true_cnn_lstm = np.argmax(y_test_keras, axis=1)
test_accuracy_cnn_lstm = accuracy_score(y_true_cnn_lstm, y_pred_cnn_lstm)
precision_macro_cnn_lstm = precision_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='macro', zero_division=0)
precision_weighted_cnn_lstm = precision_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='weighted', zero_division=0)
recall_macro_cnn_lstm = recall_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='macro', zero_division=0)
recall_weighted_cnn_lstm = recall_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='weighted', zero_division=0)
f1_macro_cnn_lstm = f1_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='macro', zero_division=0)
f1_weighted_cnn_lstm = f1_score(y_true_cnn_lstm, y_pred_cnn_lstm, average='weighted', zero_division=0)
report_cnn_lstm = classification_report(y_true_cnn_lstm, y_pred_cnn_lstm, target_names=label_mapping.keys(), digits=4)
conf_matrix_cnn_lstm = confusion_matrix(y_true_cnn_lstm, y_pred_cnn_lstm)
# In các chỉ số
print(f"\nCNN-LSTM Test Accuracy: {test_accuracy_cnn_lstm:.4f}")
print(f"Precision (Macro): {precision_macro_cnn_lstm:.4f}")
print(f"Precision (Weighted): {precision_weighted_cnn_lstm:.4f}")
print(f"Recall (Macro): {recall_macro_cnn_lstm:.4f}")
print(f"Recall (Weighted): {recall_weighted_cnn_lstm:.4f}")
print(f"F1-Score (Macro): {f1_macro_cnn_lstm:.4f}")
print(f"F1-Score (Weighted): {f1_weighted_cnn_lstm:.4f}")
print("\n========== CNN-LSTM Classification Report ==========")
print(report_cnn_lstm)
print("\n========== CNN-LSTM Confusion Matrix ==========")
print(conf_matrix_cnn_lstm)
# Lưu báo cáo vào file
cnn_lstm_report_dir = "cnn_lstm_emotion_model"
os.makedirs(cnn_lstm_report_dir, exist_ok=True)
with open(os.path.join(cnn_lstm_report_dir, "classification_report.txt"), "w", encoding="utf-8") as f:
f.write("========== CNN-LSTM Classification Report ==========\n")
f.write(report_cnn_lstm)
f.write("\n========== Additional Metrics ==========\n")
f.write(f"Test Loss: {loss:.4f}\n")
f.write(f"Test Accuracy: {test_accuracy_cnn_lstm:.4f}\n")
f.write(f"Precision (Macro): {precision_macro_cnn_lstm:.4f}\n")
f.write(f"Precision (Weighted): {precision_weighted_cnn_lstm:.4f}\n")
f.write(f"Recall (Macro): {recall_macro_cnn_lstm:.4f}\n")
f.write(f"Recall (Weighted): {recall_weighted_cnn_lstm:.4f}\n")
f.write(f"F1-Score (Macro): {f1_macro_cnn_lstm:.4f}\n")
f.write(f"F1-Score (Weighted): {f1_weighted_cnn_lstm:.4f}\n")
f.write("\n========== Confusion Matrix ==========\n")
f.write(np.array2string(conf_matrix_cnn_lstm))
print("\n========== CNN-LSTM Classification Report saved to 'cnn_lstm_emotion_model/classification_report.txt' ==========")
# Lưu mô hình CNN-LSTM
model_cnn_lstm.save(os.path.join(cnn_lstm_report_dir, 'cnn_lstm_model.keras'))
print(f"========== CNN-LSTM Model saved to '{cnn_lstm_report_dir}/cnn_lstm_model.keras' ==========")
# ========== LƯU LABEL MAPPING VÀ VOCABULARY ==========
# Lưu label_mapping và vocabulary cho RNN
with open(os.path.join(rnn_report_dir, "label_mapping.json"), "w", encoding="utf-8") as f:
json.dump(label_mapping, f, ensure_ascii=False, indent=4)
with open(os.path.join(rnn_report_dir, "vocabulary.json"), "w", encoding="utf-8") as f:
json.dump(data_manager.vocabulary.word2id, f, ensure_ascii=False, indent=4)
# Lưu label_mapping và vocabulary cho CNN-LSTM
# Giả sử label_mapping và vocabulary giống nhau, bạn có thể chỉ lưu một lần.
# Nếu khác, hãy điều chỉnh tương ứng.
print("========== Label Mapping and Vocabulary saved ==========")
# ========== DEMO DỰ ĐOÁN 1 CÂU MỚI ==========
custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"
# RNN (PyTorch)
emotion_rnn = predict_emotion_rnn(
model_rnn, custom_text, data_manager, label_mapping, device
)
print(f"Predicted Emotion (RNN): {emotion_rnn}")
# CNN-LSTM (Keras)
cnn_lstm_loaded = tf.keras.models.load_model(os.path.join(cnn_lstm_report_dir, 'cnn_lstm_model.keras'))
emotion_cnn_lstm = predict_emotion_cnn_lstm(
cnn_lstm_loaded, custom_text, data_manager, label_mapping
)
print(f"Predicted Emotion (CNN-LSTM): {emotion_cnn_lstm}")
# Kiểm tra TF, GPU
print("TF version:", tf.__version__)
print("GPU devices:", tf.config.list_physical_devices("GPU"))
# os.system("nvidia-smi") # nếu muốn xem info GPU