ducdatit2002's picture
Upload folder using huggingface_hub
e09333c verified
raw
history blame
11.3 kB
# lstm_emotion_classifier.py
# -*- coding: utf-8 -*-
import re
import emoji
import json
import pandas as pd
import numpy as np
import tensorflow as tf
from underthesea import word_tokenize
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.utils import resample
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout
from tensorflow.keras.callbacks import EarlyStopping
import joblib
import os
import matplotlib.pyplot as plt
import seaborn as sns
########################
# TIỀN XỬ LÝ
########################
def replace_emojis(sentence, emoji_mapping):
processed_sentence = []
for char in sentence:
if char in emoji_mapping:
processed_sentence.append(emoji_mapping[char])
elif not emoji.is_emoji(char):
processed_sentence.append(char)
return ''.join(processed_sentence)
def remove_profanity(sentence):
profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
words = sentence.split()
filtered = [w for w in words if w.lower() not in profane_words]
return ' '.join(filtered)
def remove_special_characters(sentence):
return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)
def normalize_whitespace(sentence):
return ' '.join(sentence.split())
def remove_repeated_characters(sentence):
return re.sub(r"(.)\1{2,}", r"\1", sentence)
def replace_numbers(sentence):
return re.sub(r"\d+", "[number]", sentence)
def tokenize_underthesea(sentence):
tokens = word_tokenize(sentence)
return " ".join(tokens)
def preprocess_sentence(sentence, abbreviations, emoji_mapping):
sentence = sentence.lower()
sentence = replace_emojis(sentence, emoji_mapping)
sentence = remove_profanity(sentence)
sentence = remove_special_characters(sentence)
sentence = normalize_whitespace(sentence)
# Thay thế viết tắt
words = sentence.split()
replaced = []
for w in words:
if w in abbreviations:
replaced.append(" ".join(abbreviations[w]))
else:
replaced.append(w)
sentence = " ".join(replaced)
sentence = remove_repeated_characters(sentence)
sentence = replace_numbers(sentence)
# Tokenize tiếng Việt
sentence = tokenize_underthesea(sentence)
return sentence
emoji_mapping = {
"😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
"🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
"🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
"😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
"🤑": "[satisfaction]",
"🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
"😏": "[sarcasm]",
"😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
"😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
"😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
"🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
"🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
"😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
"😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
"😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
"😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
"😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}
def load_abbreviations(path):
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
###################################
# MAIN
###################################
if __name__ == "__main__":
file_path = "train.xlsx"
abbreviations_path = "abbreviations.json"
output_path = "processed_phobert.xlsx"
abbreviations = load_abbreviations(abbreviations_path)
df = pd.read_excel(file_path)
if "Sentence" not in df.columns or "Emotion" not in df.columns:
raise ValueError("Dataset phải chứa cột 'Sentence' và 'Emotion'!")
# Tiền xử lý
df["processed_sentence"] = df["Sentence"].apply(
lambda x: preprocess_sentence(str(x), abbreviations, emoji_mapping)
)
# Loại bỏ rỗng
df = df[df["processed_sentence"].str.strip().astype(bool)]
print("Trước khi cân bằng:")
print(df["Emotion"].value_counts())
# =========== CÂN BẰNG TẤT CẢ CÁC LỚP =============
# Lấy max samples
max_count = df["Emotion"].value_counts().max()
df_balanced_list = []
for emo in df["Emotion"].unique():
df_emo = df[df["Emotion"] == emo]
if len(df_emo) < max_count:
# Oversample lên max_count
df_emo_oversampled = resample(
df_emo,
replace=True,
n_samples=max_count,
random_state=42
)
df_balanced_list.append(df_emo_oversampled)
else:
# Nếu emo này = max_count rồi thì giữ nguyên
df_balanced_list.append(df_emo)
df = pd.concat(df_balanced_list, axis=0)
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
print("\nSau khi cân bằng tất cả lớp:")
print(df["Emotion"].value_counts())
df.to_excel(output_path, index=False)
# Tạo label2id và id2label theo thứ tự bạn cung cấp
custom_id2label = {
0: 'Anger',
1: 'Disgust',
2: 'Enjoyment',
3: 'Fear',
4: 'Other',
5: 'Sadness',
6: 'Surprise'
}
label2id = {label: idx for idx, label in enumerate(custom_id2label.values())}
id2label = {v: k for k, v in label2id.items()}
df["label_id"] = df["Emotion"].map(label2id)
# Tách train/test
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42, stratify=df["label_id"])
print(f"Train size = {len(train_df)}, Test size = {len(test_df)}")
# Feature Extraction với Tokenizer và Padding
tokenizer = Tokenizer(num_words=5000, oov_token="<OOV>")
tokenizer.fit_on_texts(train_df["processed_sentence"])
X_train_seq = tokenizer.texts_to_sequences(train_df["processed_sentence"])
X_test_seq = tokenizer.texts_to_sequences(test_df["processed_sentence"])
max_length = 256
X_train = pad_sequences(X_train_seq, maxlen=max_length, padding='post', truncating='post')
X_test = pad_sequences(X_test_seq, maxlen=max_length, padding='post', truncating='post')
y_train = train_df["label_id"].values
y_test = test_df["label_id"].values
# Chuyển đổi nhãn thành one-hot encoding
num_classes = len(custom_id2label)
y_train = tf.keras.utils.to_categorical(y_train, num_classes=num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=num_classes)
# Xây dựng mô hình LSTM
model = Sequential([
Embedding(input_dim=5000, output_dim=128, input_length=max_length),
LSTM(128, dropout=0.2, recurrent_dropout=0.2),
Dense(64, activation='relu'),
Dropout(0.5),
Dense(num_classes, activation='softmax')
])
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.summary()
# Huấn luyện mô hình
early_stop = EarlyStopping(monitor='val_accuracy', patience=3, restore_best_weights=True)
history = model.fit(
X_train, y_train,
epochs=10,
batch_size=32,
validation_data=(X_test, y_test),
callbacks=[early_stop],
verbose=1
)
# Đánh giá mô hình
print("\n========== Evaluate on Test set ==========")
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f"Test Accuracy: {accuracy:.4f}")
# Dự đoán và in báo cáo phân loại
y_pred_probs = model.predict(X_test)
y_pred = np.argmax(y_pred_probs, axis=1)
y_true = np.argmax(y_test, axis=1)
# In Classification Report
print("\nClassification Report:")
report = classification_report(y_true, y_pred, target_names=custom_id2label.values())
print(report)
# Tính và in Confusion Matrix
conf_matrix = confusion_matrix(y_true, y_pred)
print("\nConfusion Matrix:")
print(conf_matrix)
# Vẽ Confusion Matrix
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=custom_id2label.values(),
yticklabels=custom_id2label.values())
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.title('Confusion Matrix')
plt.tight_layout()
plt.savefig(os.path.join("lstm_emotion_model", "confusion_matrix.png"))
plt.close()
print("\nConfusion Matrix plot saved to 'lstm_emotion_model/confusion_matrix.png'")
# Lưu Classification Report vào file
report_path = os.path.join("lstm_emotion_model", "classification_report.txt")
with open(report_path, "w", encoding="utf-8") as f:
f.write("========== Classification Report ==========\n")
f.write(report)
f.write("\n========== Confusion Matrix ==========\n")
f.write(np.array2string(conf_matrix))
print(f"\nClassification Report saved to '{report_path}'")
# Lưu mô hình và tokenizer
model_output_dir = "./lstm_emotion_model"
os.makedirs(model_output_dir, exist_ok=True)
model.save(os.path.join(model_output_dir, "lstm_emotion_model.h5"))
joblib.dump(tokenizer, os.path.join(model_output_dir, "tokenizer.joblib"))
with open(os.path.join(model_output_dir, "id2label.json"), "w", encoding="utf-8") as f:
json.dump(id2label, f, ensure_ascii=False, indent=4)
print("\n========== Model and Tokenizer saved ==========")
# Predict 1 câu (ví dụ)
def predict_text(text):
text_proc = preprocess_sentence(text, abbreviations, emoji_mapping)
seq = tokenizer.texts_to_sequences([text_proc])
padded = pad_sequences(seq, maxlen=max_length, padding='post', truncating='post')
pred_prob = model.predict(padded)
pred_id = np.argmax(pred_prob, axis=1)[0]
label = custom_id2label[pred_id]
return label
custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"
emotion_pred = predict_text(custom_text)
print("\nCâu ví dụ:", custom_text)
print("Dự đoán cảm xúc:", emotion_pred)
print("\nHoàn thành demo LSTM với cân bằng dữ liệu & nhiều epoch hơn!")