emotion-classification-v1 / main_phobert.py
ducdatit2002's picture
Upload folder using huggingface_hub
e09333c verified
raw
history blame
13.5 kB
# phobert_emotion_balanced.py
# -*- coding: utf-8 -*-
import re
import emoji
import json
import pandas as pd
import torch
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import (
AutoTokenizer,
AutoConfig,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments
)
from sklearn.model_selection import train_test_split
from sklearn.utils import resample
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, classification_report, confusion_matrix
########################
# TIỀN XỬ LÝ
########################
def replace_emojis(sentence, emoji_mapping):
processed_sentence = []
for char in sentence:
if char in emoji_mapping:
processed_sentence.append(emoji_mapping[char])
elif not emoji.is_emoji(char):
processed_sentence.append(char)
return ''.join(processed_sentence)
def remove_profanity(sentence):
profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
words = sentence.split()
filtered = [w for w in words if w.lower() not in profane_words]
return ' '.join(filtered)
def remove_special_characters(sentence):
return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)
def normalize_whitespace(sentence):
return ' '.join(sentence.split())
def remove_repeated_characters(sentence):
return re.sub(r"(.)\1{2,}", r"\1", sentence)
def replace_numbers(sentence):
return re.sub(r"\d+", "[number]", sentence)
def tokenize_underthesea(sentence):
from underthesea import word_tokenize
tokens = word_tokenize(sentence)
return " ".join(tokens)
def preprocess_sentence(sentence, abbreviations, emoji_mapping):
sentence = sentence.lower()
sentence = replace_emojis(sentence, emoji_mapping)
sentence = remove_profanity(sentence)
sentence = remove_special_characters(sentence)
sentence = normalize_whitespace(sentence)
# Thay thế viết tắt
words = sentence.split()
replaced = []
for w in words:
if w in abbreviations:
replaced.append(" ".join(abbreviations[w]))
else:
replaced.append(w)
sentence = " ".join(replaced)
sentence = remove_repeated_characters(sentence)
sentence = replace_numbers(sentence)
# Tokenize
sentence = tokenize_underthesea(sentence)
return sentence
emoji_mapping = {
"😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
"🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
"🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
"😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
"🤑": "[satisfaction]",
"🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
"😏": "[sarcasm]",
"😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
"😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
"😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
"🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
"🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
"😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
"😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
"😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
"😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
"😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}
def load_abbreviations(path):
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
# Dataset HF
class PhoBertEmotionDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item["labels"] = torch.tensor(self.labels[idx])
return item
###################################
# MAIN
###################################
if __name__ == "__main__":
file_path = "train.xlsx"
abbreviations_path = "abbreviations.json"
output_path = "processed_phobert.xlsx"
abbreviations = load_abbreviations(abbreviations_path)
df = pd.read_excel(file_path)
if "Sentence" not in df.columns or "Emotion" not in df.columns:
raise ValueError("Dataset phải chứa cột 'Sentence' và 'Emotion'!")
# Tiền xử lý
df["processed_sentence"] = df["Sentence"].apply(
lambda x: preprocess_sentence(str(x), abbreviations, emoji_mapping)
)
# Loại bỏ rỗng
df = df[df["processed_sentence"].str.strip().astype(bool)]
print("Trước khi cân bằng:")
print(df["Emotion"].value_counts())
# =========== CÂN BẰNG TẤT CẢ CÁC LỚP =============
# Lấy max samples
max_count = df["Emotion"].value_counts().max()
df_balanced_list = []
for emo in df["Emotion"].unique():
df_emo = df[df["Emotion"] == emo]
if len(df_emo) < max_count:
# Oversample lên max_count
df_emo_oversampled = resample(
df_emo,
replace=True,
n_samples=max_count,
random_state=42
)
df_balanced_list.append(df_emo_oversampled)
else:
# Nếu emo này = max_count rồi thì giữ nguyên
df_balanced_list.append(df_emo)
df = pd.concat(df_balanced_list, axis=0)
df = df.sample(frac=1, random_state=42).reset_index(drop=True)
print("\nSau khi cân bằng tất cả lớp:")
print(df["Emotion"].value_counts())
df.to_excel(output_path, index=False)
# Tạo label2id
unique_labels = sorted(df["Emotion"].unique()) # Sắp xếp để cố định
label2id = {label: i for i, label in enumerate(unique_labels)}
id2label = {v: k for k, v in label2id.items()}
df["label_id"] = df["Emotion"].map(label2id)
# Tách train/test
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42, stratify=df["label_id"])
print(f"Train size = {len(train_df)}, Test size = {len(test_df)}")
# Load tokenizer
checkpoint = "vinai/phobert-base"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def tokenize_texts(texts):
return tokenizer(
texts,
padding=True,
truncation=True,
max_length=256
)
train_texts = train_df["processed_sentence"].tolist()
train_labels = train_df["label_id"].tolist()
test_texts = test_df["processed_sentence"].tolist()
test_labels = test_df["label_id"].tolist()
train_encodings = tokenize_texts(train_texts)
test_encodings = tokenize_texts(test_texts)
train_dataset = PhoBertEmotionDataset(train_encodings, train_labels)
test_dataset = PhoBertEmotionDataset(test_encodings, test_labels)
# Load model
config = AutoConfig.from_pretrained(checkpoint)
config.num_labels = len(label2id)
model = AutoModelForSequenceClassification.from_pretrained(
checkpoint,
config=config
)
# Tăng epoch lên 10, LR=2e-5
training_args = TrainingArguments(
output_dir="./phobert_results_v2",
overwrite_output_dir=True,
do_train=True,
do_eval=True,
evaluation_strategy="epoch",
save_strategy="epoch",
num_train_epochs=10, # Tăng epoch
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
learning_rate=2e-5,
logging_dir="./logs",
logging_steps=50,
load_best_model_at_end=True,
metric_for_best_model="f1_weighted", # Chọn metric để lưu model tốt nhất
greater_is_better=True,
seed=42
)
# Define compute_metrics with additional metrics
def compute_metrics(eval_pred):
logits, labels = eval_pred
preds = np.argmax(logits, axis=-1)
precision_weighted = precision_score(labels, preds, average='weighted', zero_division=0)
recall_weighted = recall_score(labels, preds, average='weighted', zero_division=0)
f1_weighted = f1_score(labels, preds, average='weighted', zero_division=0)
precision_macro = precision_score(labels, preds, average='macro', zero_division=0)
recall_macro = recall_score(labels, preds, average='macro', zero_division=0)
f1_macro = f1_score(labels, preds, average='macro', zero_division=0)
accuracy = accuracy_score(labels, preds)
return {
"accuracy": accuracy,
"precision_weighted": precision_weighted,
"recall_weighted": recall_weighted,
"f1_weighted": f1_weighted,
"precision_macro": precision_macro,
"recall_macro": recall_macro,
"f1_macro": f1_macro
}
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
print("\n========== Training PhoBERT (balanced, more epochs) ==========")
trainer.train()
print("\n========== Evaluate on Test set ==========")
results = trainer.evaluate(test_dataset)
print("Test results:", results)
# Extract additional metrics
print("\n========== Additional Metrics ==========")
print(f"Test Loss: {results.get('eval_loss'):.4f}")
print(f"Test Accuracy: {results.get('eval_accuracy'):.4f}")
print(f"Precision (Macro): {results.get('eval_precision_macro'):.4f}")
print(f"Precision (Weighted): {results.get('eval_precision_weighted'):.4f}")
print(f"Recall (Macro): {results.get('eval_recall_macro'):.4f}")
print(f"Recall (Weighted): {results.get('eval_recall_weighted'):.4f}")
print(f"F1-Score (Macro): {results.get('eval_f1_macro'):.4f}")
print(f"F1-Score (Weighted): {results.get('eval_f1_weighted'):.4f}")
# Generate detailed classification report
print("\n========== Detailed Classification Report ==========")
predictions, labels, _ = trainer.predict(test_dataset)
preds = np.argmax(predictions, axis=1)
report = classification_report(labels, preds, target_names=unique_labels, digits=4)
print(report)
# Tính Confusion Matrix
conf_matrix = confusion_matrix(labels, preds)
print("\nConfusion Matrix:")
print(conf_matrix)
# Vẽ Confusion Matrix
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=unique_labels,
yticklabels=unique_labels)
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.title('Confusion Matrix')
plt.tight_layout()
confusion_matrix_path = os.path.join("phobert_emotion_model", "confusion_matrix.png")
os.makedirs("phobert_emotion_model", exist_ok=True)
plt.savefig(confusion_matrix_path)
plt.close()
print(f"\nConfusion Matrix plot saved to '{confusion_matrix_path}'")
# Lưu Classification Report vào file
report_path = os.path.join("phobert_emotion_model", "classification_report.txt")
with open(report_path, "w", encoding="utf-8") as f:
f.write("========== Classification Report ==========\n")
f.write(report)
f.write("\n========== Confusion Matrix ==========\n")
f.write(np.array2string(conf_matrix))
print(f"\nClassification Report saved to '{report_path}'")
# Lưu mô hình và tokenizer
model_output_dir = "./phobert_emotion_model"
os.makedirs(model_output_dir, exist_ok=True)
model.save_pretrained(os.path.join(model_output_dir, "phobert_emotion_model"))
tokenizer.save_pretrained(os.path.join(model_output_dir, "phobert_emotion_model"))
with open(os.path.join(model_output_dir, "id2label.json"), "w", encoding="utf-8") as f:
json.dump(id2label, f, ensure_ascii=False, indent=4)
print("\n========== Model and Tokenizer saved ==========")
# Predict 1 câu (ví dụ)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def predict_text(text):
text_proc = preprocess_sentence(text, abbreviations, emoji_mapping)
enc = tokenizer(text_proc, padding=True, truncation=True, max_length=256, return_tensors="pt")
enc = {k: v.to(device) for k, v in enc.items()}
with torch.no_grad():
out = model(**enc)
pred_id = out.logits.argmax(dim=-1).item()
return id2label[pred_id]
custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"
emotion_pred = predict_text(custom_text)
print("\nCâu ví dụ:", custom_text)
print("Dự đoán cảm xúc:", emotion_pred)
print("\nHoàn thành demo PhoBERT với cân bằng dữ liệu & nhiều epoch hơn!")