ducdatit2002's picture
Upload folder using huggingface_hub
e09333c verified
raw
history blame
19.5 kB
# thesis.py
# -*- coding: utf-8 -*-
import pandas as pd
import emoji
import json
import re
from underthesea import word_tokenize
from tqdm import tqdm
import torch
from torchtext.vocab import Vectors
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.sequence import pad_sequences
from torch.utils.data import DataLoader, TensorDataset
import torch.nn as nn
import torch.optim as optim
import numpy as np
import tensorflow as tf
# ========== CÁC HÀM TIỀN XỬ LÝ ==========
def preprocess_sentence(sentence, abbreviations, emoji_mapping):
"""
Tiền xử lý 1 câu: chuyển thường, thay thế emoji, xóa từ thô tục,
ký tự đặc biệt, chuẩn hóa khoảng trắng, v.v.
"""
sentence = sentence.lower()
sentence = replace_emojis(sentence, emoji_mapping)
sentence = remove_profanity(sentence)
sentence = remove_special_characters(sentence)
sentence = normalize_whitespace(sentence)
sentence = replace_abbreviations(sentence, abbreviations)
sentence = remove_repeated_characters(sentence)
sentence = replace_numbers(sentence)
sentence = tokenize_sentence(sentence)
return sentence
def replace_emojis(sentence, emoji_mapping):
processed_sentence = []
for char in sentence:
if char in emoji_mapping:
processed_sentence.append(emoji_mapping[char])
elif not emoji.is_emoji(char):
processed_sentence.append(char)
return ''.join(processed_sentence)
def remove_profanity(sentence):
profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"]
words = sentence.split()
filtered_words = [word for word in words if word.lower() not in profane_words]
return ' '.join(filtered_words)
def remove_special_characters(sentence):
return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence)
def normalize_whitespace(sentence):
return ' '.join(sentence.split())
def replace_abbreviations(sentence, abbreviations):
words = sentence.split()
replaced_words = [
" ".join(abbreviations[word]) if word in abbreviations else word
for word in words
]
return ' '.join(replaced_words)
def remove_repeated_characters(sentence):
return re.sub(r"(.)\1{2,}", r"\1", sentence)
def replace_numbers(sentence):
return re.sub(r"\d+", "[number]", sentence)
def tokenize_sentence(sentence):
return ' '.join(word_tokenize(sentence))
# ========== LỚP DATA MANAGER ==========
class DataManager:
def __init__(self, file_path, abbreviations_path, word2vec_path):
self.file_path = file_path
self.abbreviations_path = abbreviations_path
self.word2vec_path = word2vec_path
self.load_abbreviations()
self.load_word2vec()
def load_abbreviations(self):
with open(self.abbreviations_path, "r", encoding="utf-8") as file:
self.abbreviations = json.load(file)
def load_word2vec(self):
# Tải vector từ file word2vec, unk_init để từ vựng ngoài tập sẽ random normal
self.word_embeddings = Vectors(name=self.word2vec_path, unk_init=torch.Tensor.normal_)
self.vocabulary = self.create_vocab_from_word2vec()
def create_vocab_from_word2vec(self):
vocab = Vocabulary()
words_list = list(self.word_embeddings.stoi.keys())
for word in words_list:
vocab.add(word)
return vocab
def preprocess_data(self):
df = pd.read_excel(self.file_path)
if "Sentence" not in df.columns:
raise ValueError("Cột 'Sentence' không tồn tại trong dataset!")
# Tiền xử lý từng câu
df["processed_sentence"] = df["Sentence"].apply(
lambda x: preprocess_sentence(str(x), self.abbreviations, emoji_mapping)
)
# Loại bỏ những dòng rỗng sau khi xử lý
df = df[df["processed_sentence"].str.strip().astype(bool)]
return df
def split_and_convert(
self, df, label_column="Emotion", maxlen=400, test_size=0.2,
for_keras=False, batch_size=32
):
"""
Chia dữ liệu thành train/test. Trả về:
- Nếu for_keras=False: train_loader, test_loader, label_mapping (PyTorch)
- Nếu for_keras=True: X_train, X_test, y_train_onehot, y_test_onehot, label_mapping (Keras)
"""
if label_column not in df.columns:
raise ValueError(
f"Cột '{label_column}' không tồn tại trong DataFrame. "
f"Các cột hiện có: {df.columns.tolist()}"
)
# Tạo mapping nhãn -> số
label_mapping = {label: idx for idx, label in enumerate(df[label_column].unique())}
df[label_column] = df[label_column].map(label_mapping)
X = df["processed_sentence"].tolist()
y = df[label_column].tolist()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
# Chuyển văn bản thành tensor chỉ số
X_train_tensors = self.vocabulary.corpus_to_tensor(X_train, is_tokenized=False)
X_test_tensors = self.vocabulary.corpus_to_tensor(X_test, is_tokenized=False)
# Pad sequences
X_train_padded = pad_sequences(X_train_tensors, maxlen=maxlen)
X_test_padded = pad_sequences(X_test_tensors, maxlen=maxlen)
# Debug thông tin
print(">>> Debug Split and Convert:")
print("X_train_padded.shape:", X_train_padded.shape)
print("X_test_padded.shape: ", X_test_padded.shape)
print("y_train length:", len(y_train))
print("y_test length: ", len(y_test))
# Kiểm tra min/max token
max_token_train = np.max(X_train_padded) if X_train_padded.size > 0 else None
min_token_train = np.min(X_train_padded) if X_train_padded.size > 0 else None
max_token_test = np.max(X_test_padded) if X_test_padded.size > 0 else None
min_token_test = np.min(X_test_padded) if X_test_padded.size > 0 else None
vocab_size = len(self.vocabulary)
print(f"vocab_size: {vocab_size}")
print(f"max_token_train: {max_token_train}, min_token_train: {min_token_train}")
print(f"max_token_test: {max_token_test}, min_token_test: {min_token_test}")
if for_keras:
num_classes = len(label_mapping)
# One-hot cho nhãn
y_train_onehot = torch.nn.functional.one_hot(torch.tensor(y_train), num_classes=num_classes).numpy()
y_test_onehot = torch.nn.functional.one_hot(torch.tensor(y_test), num_classes=num_classes).numpy()
# Debug
print("y_train_onehot.shape:", y_train_onehot.shape)
print("y_test_onehot.shape: ", y_test_onehot.shape)
return X_train_padded, X_test_padded, y_train_onehot, y_test_onehot, label_mapping
else:
# Trả về DataLoader cho PyTorch
X_train_tensor = torch.tensor(X_train_padded, dtype=torch.long)
X_test_tensor = torch.tensor(X_test_padded, dtype=torch.long)
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
y_test_tensor = torch.tensor(y_test, dtype=torch.long)
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
return train_loader, test_loader, label_mapping
# ========== LỚP TỪ ĐIỂN (VOCABULARY) ==========
class Vocabulary:
def __init__(self):
self.word2id = {}
self.word2id['<pad>'] = 0
self.word2id['<unk>'] = 1
self.unk_id = self.word2id['<unk>']
self.id2word = {0: '<pad>', 1: '<unk>'}
def __getitem__(self, word):
return self.word2id.get(word, self.unk_id)
def __contains__(self, word):
return word in self.word2id
def __len__(self):
return len(self.word2id)
def lookup_tokens(self, word_indexes: list):
return [self.id2word[word_index] for word_index in word_indexes]
def add(self, word):
if word not in self:
word_index = len(self.word2id)
self.word2id[word] = word_index
self.id2word[word_index] = word
return word_index
else:
return self[word]
@staticmethod
def tokenize_corpus(corpus):
tokenized_corpus = []
for document in tqdm(corpus):
tokenized_document = [word.replace(" ", "_") for word in word_tokenize(document)]
tokenized_corpus.append(tokenized_document)
return tokenized_corpus
def corpus_to_tensor(self, corpus, is_tokenized=False):
tokenized_corpus = self.tokenize_corpus(corpus) if not is_tokenized else corpus
return [
[self[word] for word in document]
for document in tokenized_corpus
]
# ========== MAPPING EMOJI => NHÃN ==========
emoji_mapping = {
"😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]",
"🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]",
"🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]",
"😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]",
"🤑": "[satisfaction]",
"🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]",
"😏": "[sarcasm]",
"😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]",
"😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]",
"😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]",
"🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]",
"🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]",
"😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]",
"😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]",
"😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]",
"😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]",
"😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]"
}
# ========== ĐỊNH NGHĨA MÔ HÌNH RNN PYTORCH ==========
class SimpleRNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim):
super(SimpleRNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.rnn = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
embedded = self.embedding(x)
_, (hidden, _) = self.rnn(embedded)
return self.fc(hidden.squeeze(0))
# ========== HÀM DỰ ĐOÁN VỚI MÔ HÌNH PYTORCH RNN ==========
def predict_emotion_rnn(model, text, data_manager, label_mapping, device):
model.eval()
with torch.no_grad():
processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
text_tensor = torch.tensor(
pad_sequences(data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True), maxlen=400),
dtype=torch.long
).to(device)
output = model(text_tensor)
_, predicted = torch.max(output, 1)
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
return reverse_label_mapping[predicted.item()]
# ========== HÀM DỰ ĐOÁN VỚI MÔ HÌNH KERAS CNN-LSTM ==========
def predict_emotion_cnn_lstm(model, text, data_manager, label_mapping):
processed_text = preprocess_sentence(text, data_manager.abbreviations, emoji_mapping)
tokenized_text = data_manager.vocabulary.tokenize_corpus([processed_text])
text_tensor = pad_sequences(data_manager.vocabulary.corpus_to_tensor(tokenized_text, is_tokenized=True), maxlen=400)
output = model.predict(text_tensor)
predicted = output.argmax(axis=1)[0]
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
return reverse_label_mapping[predicted]
# ========== PHẦN MAIN (CHẠY THỬ) ==========
if __name__ == "__main__":
# --------------------------
# Thay đường dẫn tại đây:
# --------------------------
file_path = "train.xlsx" # file Excel gốc (chứa cột "Sentence", "Emotion", ...)
abbreviations_path = "abbreviations.json"
word2vec_path = "/home/datpham/datpham/thesis-ngtram/word2vec_vi_syllables_100dims.txt"
output_path = "processed.xlsx"
data_manager = DataManager(
file_path=file_path,
abbreviations_path=abbreviations_path,
word2vec_path=word2vec_path
)
# 1) Đọc và tiền xử lý
df = data_manager.preprocess_data()
print("Trước khi undersampling:")
print(df["Emotion"].value_counts())
# 2) UNDERSAMPLING (Ví dụ)
# Chỉnh lại tên emotion cụ thể cho phù hợp tập dữ liệu của bạn
df_enjoyment = df[df["Emotion"] == "Enjoyment"]
df_other = df[df["Emotion"] == "Other"]
df_anger = df[df["Emotion"] == "Anger"]
df_sadness = df[df["Emotion"] == "Sadness"]
df_disgust = df[df["Emotion"] == "Disgust"]
df_fear = df[df["Emotion"] == "Fear"]
df_surprise = df[df["Emotion"] == "Surprise"]
# Ví dụ: Chọn 2000 mẫu cho 'Enjoyment'
if len(df_enjoyment) > 2000:
df_enjoyment_undersampled = df_enjoyment.sample(n=2000, random_state=42)
else:
df_enjoyment_undersampled = df_enjoyment
df_balanced = pd.concat([
df_enjoyment_undersampled,
df_other,
df_anger,
df_sadness,
df_disgust,
df_fear,
df_surprise
], axis=0)
df_balanced = df_balanced.sample(frac=1, random_state=42).reset_index(drop=True)
df = df_balanced
print("\nSau khi undersampling:")
print(df["Emotion"].value_counts())
df.to_excel(output_path, index=False)
# 3) Tạo data loader cho PyTorch
train_loader, test_loader, label_mapping = data_manager.split_and_convert(
df, label_column="Emotion", for_keras=False
)
vocab_size = len(data_manager.vocabulary)
embedding_dim = 100
hidden_dim = 128
output_dim = len(label_mapping)
model_rnn = SimpleRNN(vocab_size, embedding_dim, hidden_dim, output_dim)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model_rnn.parameters())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_rnn.to(device)
num_epochs = 20
for epoch in range(num_epochs):
model_rnn.train()
epoch_loss = 0
correct = 0
total = 0
for X_batch, y_batch in train_loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
optimizer.zero_grad()
predictions = model_rnn(X_batch)
loss = criterion(predictions, y_batch)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
_, predicted = torch.max(predictions, 1)
correct += (predicted == y_batch).sum().item()
total += y_batch.size(0)
print(f"Epoch {epoch+1}/{num_epochs}, "
f"Loss: {epoch_loss/len(train_loader):.4f}, "
f"Accuracy: {correct/total:.4f}")
# Đánh giá RNN trên test set
model_rnn.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for X_batch, y_batch in test_loader:
X_batch, y_batch = X_batch.to(device), y_batch.to(device)
predictions = model_rnn(X_batch)
loss = criterion(predictions, y_batch)
test_loss += loss.item()
_, predicted = torch.max(predictions, 1)
correct += (predicted == y_batch).sum().item()
total += y_batch.size(0)
print(f"Test Loss: {test_loss/len(test_loader):.4f}, "
f"Test Accuracy: {correct/total:.4f}")
# ========== CNN-LSTM (Keras) ==========
from keras.models import Model
from keras.layers import Input, Embedding, Convolution1D, LSTM, Dense, Dropout, Lambda, concatenate
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
print("Training CNN-LSTM...")
X_train, X_test, y_train, y_test, label_mapping = data_manager.split_and_convert(
df, label_column="Emotion", for_keras=True
)
maxlen = 400
input_layer = Input(shape=(maxlen,), dtype='int32', name='main_input')
emb_layer = Embedding(len(data_manager.vocabulary), embedding_dim)(input_layer)
def max_1d(X):
return tf.reduce_max(X, axis=1)
con3_layer = Convolution1D(150, kernel_size=3, activation='relu')(emb_layer)
pool_con3_layer = Lambda(max_1d, output_shape=(150,))(con3_layer)
con5_layer = Convolution1D(150, kernel_size=5, activation='relu')(emb_layer)
pool_con5_layer = Lambda(max_1d, output_shape=(150,))(con5_layer)
lstm_layer = LSTM(128)(emb_layer)
cnn_lstm_layer = concatenate([pool_con3_layer, pool_con5_layer, lstm_layer])
dense_layer = Dense(100, activation='relu')(cnn_lstm_layer)
dropout_layer = Dropout(0.2)(dense_layer)
output_layer = Dense(len(label_mapping), activation='softmax')(dropout_layer)
model_cnn_lstm = Model(inputs=input_layer, outputs=output_layer)
model_cnn_lstm.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])
checkpoint = ModelCheckpoint('cnn_lstm_best.keras', save_best_only=True, monitor='val_accuracy', mode='max')
model_cnn_lstm.fit(
X_train, y_train,
validation_data=(X_test, y_test),
batch_size=32,
epochs=20,
callbacks=[checkpoint]
)
model_cnn_lstm.save('cnn_lstm_model.keras')
loss, accuracy = model_cnn_lstm.evaluate(X_test, y_test)
print(f"CNN-LSTM Test Loss: {loss:.4f}, Test Accuracy: {accuracy:.4f}")
# Demo dự đoán 1 câu mới
custom_text = "Tôi rất vui khi sử dụng dịch vụ này!"
# RNN (PyTorch)
emotion_rnn = predict_emotion_rnn(model_rnn, custom_text, data_manager, label_mapping, device)
print(f"Predicted Emotion (RNN): {emotion_rnn}")
# CNN-LSTM (Keras)
cnn_lstm_model = tf.keras.models.load_model('cnn_lstm_model.keras')
emotion_cnn_lstm = predict_emotion_cnn_lstm(cnn_lstm_model, custom_text, data_manager, label_mapping)
print(f"Predicted Emotion (CNN-LSTM): {emotion_cnn_lstm}")
# Kiểm tra phiên bản TF, GPU
print("TF version:", tf.__version__)
print("GPU devices:", tf.config.list_physical_devices("GPU"))
# Có thể kiểm tra CUDA/GPU thông qua lệnh system sau (nếu muốn):
# import os
# os.system("nvidia-smi")