# phobert_emotion_balanced.py # -*- coding: utf-8 -*- import re import emoji import json import pandas as pd import torch import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns from transformers import ( AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, Trainer, TrainingArguments ) from sklearn.model_selection import train_test_split from sklearn.utils import resample from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, classification_report, confusion_matrix ######################## # TIỀN XỬ LÝ ######################## def replace_emojis(sentence, emoji_mapping): processed_sentence = [] for char in sentence: if char in emoji_mapping: processed_sentence.append(emoji_mapping[char]) elif not emoji.is_emoji(char): processed_sentence.append(char) return ''.join(processed_sentence) def remove_profanity(sentence): profane_words = ["loz", "vloz", "vl", "dm", "đm", "clgt", "dmm", "cc", "vc", "đù mé", "vãi"] words = sentence.split() filtered = [w for w in words if w.lower() not in profane_words] return ' '.join(filtered) def remove_special_characters(sentence): return re.sub(r"[\^\*@#&$%<>~{}|\\]", "", sentence) def normalize_whitespace(sentence): return ' '.join(sentence.split()) def remove_repeated_characters(sentence): return re.sub(r"(.)\1{2,}", r"\1", sentence) def replace_numbers(sentence): return re.sub(r"\d+", "[number]", sentence) def tokenize_underthesea(sentence): from underthesea import word_tokenize tokens = word_tokenize(sentence) return " ".join(tokens) def preprocess_sentence(sentence, abbreviations, emoji_mapping): sentence = sentence.lower() sentence = replace_emojis(sentence, emoji_mapping) sentence = remove_profanity(sentence) sentence = remove_special_characters(sentence) sentence = normalize_whitespace(sentence) # Thay thế viết tắt words = sentence.split() replaced = [] for w in words: if w in abbreviations: replaced.append(" ".join(abbreviations[w])) else: replaced.append(w) sentence = " ".join(replaced) sentence = remove_repeated_characters(sentence) sentence = replace_numbers(sentence) # Tokenize sentence = tokenize_underthesea(sentence) return sentence emoji_mapping = { "😀": "[joy]", "😃": "[joy]", "😄": "[joy]", "😁": "[joy]", "😆": "[joy]", "😅": "[joy]", "😂": "[joy]", "🤣": "[joy]", "🙂": "[love]", "🙃": "[love]", "😉": "[love]", "😊": "[love]", "😇": "[love]", "🥰": "[love]", "😍": "[love]", "🤩": "[love]", "😘": "[love]", "😗": "[love]", "☺": "[love]", "😚": "[love]", "😙": "[love]", "😋": "[satisfaction]", "😛": "[satisfaction]", "😜": "[satisfaction]", "🤪": "[satisfaction]", "😝": "[satisfaction]", "🤑": "[satisfaction]", "🤐": "[neutral]", "🤨": "[neutral]", "😐": "[neutral]", "😑": "[neutral]", "😶": "[neutral]", "😏": "[sarcasm]", "😒": "[disappointment]", "🙄": "[disappointment]", "😬": "[disappointment]", "😔": "[sadness]", "😪": "[sadness]", "😢": "[sadness]", "😭": "[sadness]", "😥": "[sadness]", "😓": "[sadness]", "😩": "[tiredness]", "😫": "[tiredness]", "🥱": "[tiredness]", "🤤": "[discomfort]", "🤢": "[discomfort]", "🤮": "[discomfort]", "🤧": "[discomfort]", "🥵": "[discomfort]", "🥶": "[discomfort]", "🥴": "[discomfort]", "😵": "[discomfort]", "🤯": "[discomfort]", "😕": "[confused]", "😟": "[confused]", "🙁": "[confused]", "☹": "[confused]", "😮": "[surprise]", "😯": "[surprise]", "😲": "[surprise]", "😳": "[surprise]", "🥺": "[pleading]", "😦": "[fear]", "😧": "[fear]", "😨": "[fear]", "😰": "[fear]", "😱": "[fear]", "😖": "[confusion]", "😣": "[confusion]", "😞": "[confusion]", "😤": "[anger]", "😡": "[anger]", "😠": "[anger]", "🤬": "[anger]", "😈": "[mischievous]", "👿": "[mischievous]" } def load_abbreviations(path): with open(path, "r", encoding="utf-8") as f: return json.load(f) # Dataset HF class PhoBertEmotionDataset(torch.utils.data.Dataset): def __init__(self, encodings, labels): self.encodings = encodings self.labels = labels def __len__(self): return len(self.labels) def __getitem__(self, idx): item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} item["labels"] = torch.tensor(self.labels[idx]) return item ################################### # MAIN ################################### if __name__ == "__main__": file_path = "train.xlsx" abbreviations_path = "abbreviations.json" output_path = "processed_phobert.xlsx" abbreviations = load_abbreviations(abbreviations_path) df = pd.read_excel(file_path) if "Sentence" not in df.columns or "Emotion" not in df.columns: raise ValueError("Dataset phải chứa cột 'Sentence' và 'Emotion'!") # Tiền xử lý df["processed_sentence"] = df["Sentence"].apply( lambda x: preprocess_sentence(str(x), abbreviations, emoji_mapping) ) # Loại bỏ rỗng df = df[df["processed_sentence"].str.strip().astype(bool)] print("Trước khi cân bằng:") print(df["Emotion"].value_counts()) # =========== CÂN BẰNG TẤT CẢ CÁC LỚP ============= # Lấy max samples max_count = df["Emotion"].value_counts().max() df_balanced_list = [] for emo in df["Emotion"].unique(): df_emo = df[df["Emotion"] == emo] if len(df_emo) < max_count: # Oversample lên max_count df_emo_oversampled = resample( df_emo, replace=True, n_samples=max_count, random_state=42 ) df_balanced_list.append(df_emo_oversampled) else: # Nếu emo này = max_count rồi thì giữ nguyên df_balanced_list.append(df_emo) df = pd.concat(df_balanced_list, axis=0) df = df.sample(frac=1, random_state=42).reset_index(drop=True) print("\nSau khi cân bằng tất cả lớp:") print(df["Emotion"].value_counts()) df.to_excel(output_path, index=False) # Tạo label2id unique_labels = sorted(df["Emotion"].unique()) # Sắp xếp để cố định label2id = {label: i for i, label in enumerate(unique_labels)} id2label = {v: k for k, v in label2id.items()} df["label_id"] = df["Emotion"].map(label2id) # Tách train/test train_df, test_df = train_test_split(df, test_size=0.2, random_state=42, stratify=df["label_id"]) print(f"Train size = {len(train_df)}, Test size = {len(test_df)}") # Load tokenizer checkpoint = "vinai/phobert-base" tokenizer = AutoTokenizer.from_pretrained(checkpoint) def tokenize_texts(texts): return tokenizer( texts, padding=True, truncation=True, max_length=256 ) train_texts = train_df["processed_sentence"].tolist() train_labels = train_df["label_id"].tolist() test_texts = test_df["processed_sentence"].tolist() test_labels = test_df["label_id"].tolist() train_encodings = tokenize_texts(train_texts) test_encodings = tokenize_texts(test_texts) train_dataset = PhoBertEmotionDataset(train_encodings, train_labels) test_dataset = PhoBertEmotionDataset(test_encodings, test_labels) # Load model config = AutoConfig.from_pretrained(checkpoint) config.num_labels = len(label2id) model = AutoModelForSequenceClassification.from_pretrained( checkpoint, config=config ) # Tăng epoch lên 10, LR=2e-5 training_args = TrainingArguments( output_dir="./phobert_results_v2", overwrite_output_dir=True, do_train=True, do_eval=True, evaluation_strategy="epoch", save_strategy="epoch", num_train_epochs=10, # Tăng epoch per_device_train_batch_size=16, per_device_eval_batch_size=16, learning_rate=2e-5, logging_dir="./logs", logging_steps=50, load_best_model_at_end=True, metric_for_best_model="f1_weighted", # Chọn metric để lưu model tốt nhất greater_is_better=True, seed=42 ) # Define compute_metrics with additional metrics def compute_metrics(eval_pred): logits, labels = eval_pred preds = np.argmax(logits, axis=-1) precision_weighted = precision_score(labels, preds, average='weighted', zero_division=0) recall_weighted = recall_score(labels, preds, average='weighted', zero_division=0) f1_weighted = f1_score(labels, preds, average='weighted', zero_division=0) precision_macro = precision_score(labels, preds, average='macro', zero_division=0) recall_macro = recall_score(labels, preds, average='macro', zero_division=0) f1_macro = f1_score(labels, preds, average='macro', zero_division=0) accuracy = accuracy_score(labels, preds) return { "accuracy": accuracy, "precision_weighted": precision_weighted, "recall_weighted": recall_weighted, "f1_weighted": f1_weighted, "precision_macro": precision_macro, "recall_macro": recall_macro, "f1_macro": f1_macro } trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=test_dataset, tokenizer=tokenizer, compute_metrics=compute_metrics ) print("\n========== Training PhoBERT (balanced, more epochs) ==========") trainer.train() print("\n========== Evaluate on Test set ==========") results = trainer.evaluate(test_dataset) print("Test results:", results) # Extract additional metrics print("\n========== Additional Metrics ==========") print(f"Test Loss: {results.get('eval_loss'):.4f}") print(f"Test Accuracy: {results.get('eval_accuracy'):.4f}") print(f"Precision (Macro): {results.get('eval_precision_macro'):.4f}") print(f"Precision (Weighted): {results.get('eval_precision_weighted'):.4f}") print(f"Recall (Macro): {results.get('eval_recall_macro'):.4f}") print(f"Recall (Weighted): {results.get('eval_recall_weighted'):.4f}") print(f"F1-Score (Macro): {results.get('eval_f1_macro'):.4f}") print(f"F1-Score (Weighted): {results.get('eval_f1_weighted'):.4f}") # Generate detailed classification report print("\n========== Detailed Classification Report ==========") predictions, labels, _ = trainer.predict(test_dataset) preds = np.argmax(predictions, axis=1) report = classification_report(labels, preds, target_names=unique_labels, digits=4) print(report) # Tính Confusion Matrix conf_matrix = confusion_matrix(labels, preds) print("\nConfusion Matrix:") print(conf_matrix) # Vẽ Confusion Matrix plt.figure(figsize=(10, 8)) sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=unique_labels, yticklabels=unique_labels) plt.ylabel('Actual') plt.xlabel('Predicted') plt.title('Confusion Matrix') plt.tight_layout() confusion_matrix_path = os.path.join("phobert_emotion_model", "confusion_matrix.png") os.makedirs("phobert_emotion_model", exist_ok=True) plt.savefig(confusion_matrix_path) plt.close() print(f"\nConfusion Matrix plot saved to '{confusion_matrix_path}'") # Lưu Classification Report vào file report_path = os.path.join("phobert_emotion_model", "classification_report.txt") with open(report_path, "w", encoding="utf-8") as f: f.write("========== Classification Report ==========\n") f.write(report) f.write("\n========== Confusion Matrix ==========\n") f.write(np.array2string(conf_matrix)) print(f"\nClassification Report saved to '{report_path}'") # Lưu mô hình và tokenizer model_output_dir = "./phobert_emotion_model" os.makedirs(model_output_dir, exist_ok=True) model.save_pretrained(os.path.join(model_output_dir, "phobert_emotion_model")) tokenizer.save_pretrained(os.path.join(model_output_dir, "phobert_emotion_model")) with open(os.path.join(model_output_dir, "id2label.json"), "w", encoding="utf-8") as f: json.dump(id2label, f, ensure_ascii=False, indent=4) print("\n========== Model and Tokenizer saved ==========") # Predict 1 câu (ví dụ) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def predict_text(text): text_proc = preprocess_sentence(text, abbreviations, emoji_mapping) enc = tokenizer(text_proc, padding=True, truncation=True, max_length=256, return_tensors="pt") enc = {k: v.to(device) for k, v in enc.items()} with torch.no_grad(): out = model(**enc) pred_id = out.logits.argmax(dim=-1).item() return id2label[pred_id] custom_text = "Tôi rất vui khi sử dụng dịch vụ này!" emotion_pred = predict_text(custom_text) print("\nCâu ví dụ:", custom_text) print("Dự đoán cảm xúc:", emotion_pred) print("\nHoàn thành demo PhoBERT với cân bằng dữ liệu & nhiều epoch hơn!")