PEFT
Safetensors
File size: 5,978 Bytes
21562e0
 
 
8aade46
 
4d72828
21562e0
 
2b6f10c
 
 
 
 
 
 
 
 
 
 
21562e0
 
 
 
 
 
28b1658
 
21562e0
 
 
 
 
 
28b1658
21562e0
28b1658
b955aa0
28b1658
 
 
 
21562e0
 
 
 
 
b955aa0
 
21562e0
 
 
 
 
 
 
 
 
28b1658
 
 
21562e0
 
 
 
 
28b1658
21562e0
 
 
 
 
28b1658
 
21562e0
 
 
 
 
28b1658
 
 
21562e0
 
 
 
 
28b1658
21562e0
 
 
28b1658
 
 
 
 
 
21562e0
28b1658
 
21562e0
 
 
 
 
 
 
28b1658
21562e0
 
 
 
 
28b1658
 
21562e0
 
 
28b1658
21562e0
 
 
 
 
 
 
 
 
28b1658
21562e0
 
 
28b1658
21562e0
 
 
28b1658
21562e0
 
 
28b1658
21562e0
 
 
28b1658
21562e0
 
 
 
 
28b1658
21562e0
 
 
 
 
28b1658
21562e0
 
b955aa0
 
21562e0
 
 
28b1658
21562e0
 
 
28b1658
21562e0
 
 
28b1658
21562e0
 
 
28b1658
21562e0
28b1658
21562e0
28b1658
dfcbe5e
28b1658
21562e0
28b1658
21562e0
 
 
 
 
28b1658
 
 
21562e0
 
 
28b1658
21562e0
 
 
28b1658
21562e0
 
 
28b1658
21562e0
 
 
28b1658
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
datasets:
- jtatman/python-code-dataset-500k
license: mit
---

## Citation 

```bibtex
@misc{Molino2019,
  author = {Piero Molino and Yaroslav Dudin and Sai Sumanth Miryala},
  title = {Ludwig: a type-based declarative deep learning toolbox},
  year = {2019},
  eprint = {arXiv:1909.07930},
}
```
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->





## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This model focuses on fine-tuning the Llama-2 7B large language model for Python code generation. The project leverages Ludwig, an open-source toolkit, and a dataset of 500k Python code samples from Hugging Face. The model applies techniques such as prompt templating, zero-shot inference, and few-shot learning, enhancing the model's performance in generating Python code snippets efficiently.

- **Developed by:** Kevin Geejo, Aniket Yadav, Rishab Pandey  

- **Model type:** Fine-tuned Llama-2 7B for Python code generation  
- **Language(s) (NLP):** Python (for code generation tasks)  
- **License:** Not explicitly mentioned, but Llama-2 models are typically governed by Meta AI’s open-source licensing  
- **Finetuned from model [optional]:** Llama-2 7B (Meta AI, 2023)  

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** Hugging Face


## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

- Python code generation for software development  
- Automation of coding tasks  
- Developer productivity enhancement  

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

- Code completion, bug fixing, and Python code translation  

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

- Non-Python programming tasks  
- Generation of sensitive, legal, or medical content  

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

- Limited to Python programming tasks  
- Dataset biases from Hugging Face's Python Code Dataset  
- Environmental impact from computational costs during fine-tuning  

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users should be aware of computational efficiency trade-offs and potential limitations in generalizing to new Python tasks.  

## How to Get Started with the Model

Use the code below to get started with the model:

```python
# Example setup (simplified)
import ludwig
from transformers import AutoModel

model = AutoModel.from_pretrained("llama-2-7b-python")
```  

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

- 500k Python code samples sourced from Hugging Face  

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

- **Preprocessing [optional]:** Hugging Face Python Code Dataset  
- **Training regime:** Parameter Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation (LoRA)  

#### Speeds, Sizes, Times [optional]

- Not explicitly mentioned in the document  

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

- Derived from Python code datasets on Hugging Face  

#### Factors

- Python code generation tasks  

#### Metrics

- Code correctness and efficiency  

### Results

- Fine-tuning improved Python code generation performance  

#### Summary

The fine-tuned model showed enhanced proficiency in generating Python code snippets, reflecting its adaptability to specific coding tasks.  

## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]  

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).  





### Model Architecture and Objective

- Llama-2 7B model architecture fine-tuned for Python code generation  

### Compute Infrastructure

- Not explicitly mentioned  

#### Hardware

- Not specified  

#### Software

- Ludwig toolkit and Hugging Face integration  

**BibTeX:**  

[More Information Needed]  

**APA:**  

[More Information Needed]  

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

- **Llama-2:** Open-source large language model by Meta AI  
- **LoRA (Low-Rank Adaptation):** Efficient fine-tuning method modifying fewer model parameters  
- **PEFT:** Parameter-efficient fine-tuning technique  

## More Information [optional]

[More Information Needed]  

## Model Card Authors [optional]

Kevin Geejo, Aniket Yadav, Rishab Pandey  

## Model Card Contact

[email protected], [email protected], [email protected]  

### Framework versions

- **Llama-2 version:** 7B  
- **Ludwig version:** 0.8  
- **Hugging Face integration:** Latest