File size: 12,632 Bytes
898516b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/env python3

import os
import sys
import json
from pathlib import Path

# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith("--execution-provider") for arg in sys.argv):
    os.environ["OMP_NUM_THREADS"] = "1"
# reduce tensorflow log level
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import warnings
from typing import List
import platform
import signal
import shutil
import argparse
import onnxruntime
import tensorflow
import roop.globals
import roop.metadata
# import roop.ui as ui
from roop.predictor import predict_image, predict_video
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import (
    has_image_extension,
    is_image,
    is_video,
    detect_fps,
    create_video,
    extract_frames,
    get_temp_frame_paths,
    restore_audio,
    create_temp,
    move_temp,
    clean_temp,
    normalize_output_path,
    resolve_relative_path,
)

warnings.filterwarnings("ignore", category=FutureWarning, module="insightface")
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision")

CONFIG_PATH = Path(__file__).parent / "model_config.json"


def load_model_path():
    default_model_path = resolve_relative_path("../models/inswapper/inswapper_128.onnx")

    if CONFIG_PATH.exists():
        try:
            with CONFIG_PATH.open("r") as f:
                config = json.load(f)
                model_path = config.get("model_path")
                if model_path and os.path.exists(model_path):
                    print(f"[CORE] Loaded model path from config: {model_path}")
                    return model_path
                else:
                    print(f"[CORE] Invalid model path in config: {model_path}, using default: {default_model_path}")
        except Exception as e:
            print(f"[CORE] Error reading model config: {str(e)}, using default: {default_model_path}")
    else:
        print(f"[CORE] Model config not found at {CONFIG_PATH}, using default: {default_model_path}")

    return default_model_path


def parse_args() -> None:
    signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
    program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
    program.add_argument("-s", "--source", help="select an source image", dest="source_path")
    program.add_argument("-t", "--target", help="select an target image or video", dest="target_path")
    program.add_argument("-o", "--output", help="select output file or directory", dest="output_path")
    program.add_argument(
        "--frame-processor",
        help="frame processors (choices: face_swapper, face_enhancer, ...)",
        dest="frame_processor",
        default=["face_swapper"],
        nargs="+",
    )
    program.add_argument("--keep-fps", help="keep target fps", dest="keep_fps", action="store_true")
    program.add_argument("--keep-frames", help="keep temporary frames", dest="keep_frames", action="store_true")
    program.add_argument("--skip-audio", help="skip target audio", dest="skip_audio", action="store_true")
    program.add_argument("--many-faces", help="process every face", dest="many_faces", action="store_true")
    program.add_argument(
        "--reference-face-position", help="position of the reference face", dest="reference_face_position", type=int, default=0
    )
    program.add_argument(
        "--reference-frame-number", help="number of the reference frame", dest="reference_frame_number", type=int, default=0
    )
    program.add_argument(
        "--similar-face-distance", help="face distance used for recognition", dest="similar_face_distance", type=float, default=0.85
    )
    program.add_argument(
        "--temp-frame-format",
        help="image format used for frame extraction",
        dest="temp_frame_format",
        default="png",
        choices=["jpg", "png"],
    )
    program.add_argument(
        "--temp-frame-quality",
        help="image quality used for frame extraction",
        dest="temp_frame_quality",
        type=int,
        default=0,
        choices=range(101),
        metavar="[0-100]",
    )
    program.add_argument(
        "--output-video-encoder",
        help="encoder used for the output video",
        dest="output_video_encoder",
        default="libx264",
        choices=["libx264", "libx265", "libvpx-vp9", "h264_nvenc", "hevc_nvenc"],
    )
    program.add_argument(
        "--output-video-quality",
        help="quality used for the output video",
        dest="output_video_quality",
        type=int,
        default=35,
        choices=range(101),
        metavar="[0-100]",
    )
    program.add_argument("--max-memory", help="maximum amount of RAM in GB", dest="max_memory", type=int)
    program.add_argument(
        "--execution-provider",
        help="available execution provider (choices: cpu, ...)",
        dest="execution_provider",
        default=["cpu"],
        choices=suggest_execution_providers(),
        nargs="+",
    )
    program.add_argument(
        "--execution-threads", help="number of execution threads", dest="execution_threads", type=int, default=suggest_execution_threads()
    )
    program.add_argument("--model-path", help="path to face swapper model", dest="model_path")
    program.add_argument("-v", "--version", action="version", version=f"{roop.metadata.name} {roop.metadata.version}")

    args = program.parse_args()

    roop.globals.source_path = args.source_path
    roop.globals.target_path = args.target_path
    roop.globals.output_path = normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path)
    roop.globals.headless = (
        roop.globals.source_path is not None and roop.globals.target_path is not None and roop.globals.output_path is not None
    )
    roop.globals.frame_processors = args.frame_processor
    roop.globals.keep_fps = args.keep_fps
    roop.globals.keep_frames = args.keep_frames
    roop.globals.skip_audio = args.skip_audio
    roop.globals.many_faces = args.many_faces
    roop.globals.reference_face_position = args.reference_face_position
    roop.globals.reference_frame_number = args.reference_frame_number
    roop.globals.similar_face_distance = args.similar_face_distance
    roop.globals.temp_frame_format = args.temp_frame_format
    roop.globals.temp_frame_quality = args.temp_frame_quality
    roop.globals.output_video_encoder = args.output_video_encoder
    roop.globals.output_video_quality = args.output_video_quality
    roop.globals.max_memory = args.max_memory
    roop.globals.execution_providers = decode_execution_providers(args.execution_provider)
    roop.globals.execution_threads = args.execution_threads

    # Thiết lập model_path: ưu tiên tham số dòng lệnh, nếu không thì đọc từ config
    if args.model_path and os.path.exists(args.model_path):
        roop.globals.model_path = args.model_path
        print(f"[CORE] Using model path from command line: {roop.globals.model_path}")
    else:
        roop.globals.model_path = load_model_path()


def encode_execution_providers(execution_providers: List[str]) -> List[str]:
    return [execution_provider.replace("ExecutionProvider", "").lower() for execution_provider in execution_providers]


def decode_execution_providers(execution_providers: List[str]) -> List[str]:
    return [
        provider
        for provider, encoded_execution_provider in zip(
            onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers())
        )
        if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)
    ]


def suggest_execution_providers() -> List[str]:
    return encode_execution_providers(onnxruntime.get_available_providers())


def suggest_execution_threads() -> int:
    if "CUDAExecutionProvider" in onnxruntime.get_available_providers():
        return 8
    return 1


def limit_resources() -> None:
    gpus = tensorflow.config.experimental.list_physical_devices("GPU")
    for gpu in gpus:
        tensorflow.config.experimental.set_virtual_device_configuration(
            gpu, [tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)]
        )
    if roop.globals.max_memory:
        memory = roop.globals.max_memory * 1024**3
        if platform.system().lower() == "darwin":
            memory = roop.globals.max_memory * 1024**6
        if platform.system().lower() == "windows":
            import ctypes

            kernel32 = ctypes.windll.kernel32
            kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
        else:
            import resource

            resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))


def pre_check() -> bool:
    if sys.version_info < (3, 9):
        update_status("Python version is not supported - please upgrade to 3.9 or higher.")
        return False
    if not shutil.which("ffmpeg"):
        update_status("ffmpeg is not installed.")
        return False
    return True


def update_status(message: str, scope: str = "ROOP.CORE") -> None:
    print(f"[{scope}] {message}")
    # if not roop.globals.headless:
    #     ui.update_status(message)


def start() -> None:
    print(f"[CORE] Starting with model: {roop.globals.model_path}")
    for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
        if not frame_processor.pre_start():
            return
    if has_image_extension(roop.globals.target_path):
        if predict_image(roop.globals.target_path):
            destroy()
        shutil.copy2(roop.globals.target_path, roop.globals.output_path)
        for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
            update_status("Progressing...", frame_processor.NAME)
            frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path)
            frame_processor.post_process()
        if is_image(roop.globals.output_path):
            update_status("Processing to image succeed!")
        else:
            update_status("Processing to image failed!")
        return
    if predict_video(roop.globals.target_path):
        destroy()
    update_status("Creating temporary resources...")
    create_temp(roop.globals.target_path)
    if roop.globals.keep_fps:
        fps = detect_fps(roop.globals.target_path)
        update_status(f"Extracting frames with {fps} FPS...")
        extract_frames(roop.globals.target_path, fps)
    else:
        update_status("Extracting frames with 30 FPS...")
        extract_frames(roop.globals.target_path)
    temp_frame_paths = get_temp_frame_paths(roop.globals.target_path)
    if temp_frame_paths:
        for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
            update_status("Progressing...", frame_processor.NAME)
            frame_processor.process_video(roop.globals.source_path, temp_frame_paths)
            frame_processor.post_process()
    else:
        update_status("Frames not found...")
        return
    if roop.globals.keep_fps:
        fps = detect_fps(roop.globals.target_path)
        update_status(f"Creating video with {fps} FPS...")
        create_video(roop.globals.target_path, fps)
    else:
        update_status("Creating video with 30 FPS...")
        create_video(roop.globals.target_path)
    if roop.globals.skip_audio:
        move_temp(roop.globals.target_path, roop.globals.output_path)
        update_status("Skipping audio...")
    else:
        if roop.globals.keep_fps:
            update_status("Restoring audio...")
        else:
            update_status("Restoring audio might cause issues as fps are not kept...")
        restore_audio(roop.globals.target_path, roop.globals.output_path)
    update_status("Cleaning temporary resources...")
    clean_temp(roop.globals.target_path)
    if is_video(roop.globals.output_path):
        update_status("Processing to video succeed!")
    else:
        update_status("Processing to video failed!")


def destroy() -> None:
    if roop.globals.target_path:
        clean_temp(roop.globals.target_path)
    sys.exit()


def run() -> None:
    parse_args()
    if not pre_check():
        return
    for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
        if not frame_processor.pre_check():
            return
    limit_resources()
    if roop.globals.headless:
        start()
    # else:
    #     window = ui.init(start, destroy)
    #     window.mainloop()