File size: 2,330 Bytes
a257816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
from torch import nn, sin, pow
from torch.nn import Parameter


class Swish(torch.nn.Module):
    """Construct an Swish object."""

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Return Swish activation function."""
        return x * torch.sigmoid(x)


# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
#   LICENSE is in incl_licenses directory.
class Snake(nn.Module):
    '''

    Implementation of a sine-based periodic activation function

    Shape:

        - Input: (B, C, T)

        - Output: (B, C, T), same shape as the input

    Parameters:

        - alpha - trainable parameter

    References:

        - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:

        https://arxiv.org/abs/2006.08195

    Examples:

        >>> a1 = snake(256)

        >>> x = torch.randn(256)

        >>> x = a1(x)

    '''
    def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
        '''

        Initialization.

        INPUT:

            - in_features: shape of the input

            - alpha: trainable parameter

            alpha is initialized to 1 by default, higher values = higher-frequency.

            alpha will be trained along with the rest of your model.

        '''
        super(Snake, self).__init__()
        self.in_features = in_features

        # initialize alpha
        self.alpha_logscale = alpha_logscale
        if self.alpha_logscale:  # log scale alphas initialized to zeros
            self.alpha = Parameter(torch.zeros(in_features) * alpha)
        else:  # linear scale alphas initialized to ones
            self.alpha = Parameter(torch.ones(in_features) * alpha)

        self.alpha.requires_grad = alpha_trainable

        self.no_div_by_zero = 0.000000001

    def forward(self, x):
        '''

        Forward pass of the function.

        Applies the function to the input elementwise.

        Snake ∶= x + 1/a * sin^2 (xa)

        '''
        alpha = self.alpha.unsqueeze(0).unsqueeze(-1)  # line up with x to [B, C, T]
        if self.alpha_logscale:
            alpha = torch.exp(alpha)
        x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)

        return x