API_MC_AI / VietTTS /flow /decoder.py
duyv's picture
Upload 86 files
a257816 verified
import torch
import torch.nn as nn
from einops import pack, rearrange, repeat
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from conformer import ConformerBlock
from diffusers.models.activations import get_activation
from VietTTS.transformer.transformer import BasicTransformerBlock
class SinusoidalPosEmb(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
def forward(self, x, scale=1000):
if x.ndim < 1:
x = x.unsqueeze(0)
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class Block1D(torch.nn.Module):
def __init__(self, dim, dim_out, groups=8):
super().__init__()
self.block = torch.nn.Sequential(
torch.nn.Conv1d(dim, dim_out, 3, padding=1),
torch.nn.GroupNorm(groups, dim_out),
nn.Mish(),
)
def forward(self, x, mask):
output = self.block(x * mask)
return output * mask
class ResnetBlock1D(torch.nn.Module):
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
super().__init__()
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
self.block1 = Block1D(dim, dim_out, groups=groups)
self.block2 = Block1D(dim_out, dim_out, groups=groups)
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
def forward(self, x, mask, time_emb):
h = self.block1(x, mask)
h += self.mlp(time_emb).unsqueeze(-1)
h = self.block2(h, mask)
output = h + self.res_conv(x * mask)
return output
class Downsample1D(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
def forward(self, x):
return self.conv(x)
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
):
super().__init__()
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
else:
self.cond_proj = None
self.act = get_activation(act_fn)
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = get_activation(post_act_fn)
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class Upsample1D(nn.Module):
"""A 1D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
"""
def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.conv = None
if use_conv_transpose:
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
elif use_conv:
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
def forward(self, inputs):
assert inputs.shape[1] == self.channels
if self.use_conv_transpose:
return self.conv(inputs)
outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
if self.use_conv:
outputs = self.conv(outputs)
return outputs
class ConformerWrapper(ConformerBlock):
def __init__( # pylint: disable=useless-super-delegation
self,
*,
dim,
dim_head=64,
heads=8,
ff_mult=4,
conv_expansion_factor=2,
conv_kernel_size=31,
attn_dropout=0,
ff_dropout=0,
conv_dropout=0,
conv_causal=False,
):
super().__init__(
dim=dim,
dim_head=dim_head,
heads=heads,
ff_mult=ff_mult,
conv_expansion_factor=conv_expansion_factor,
conv_kernel_size=conv_kernel_size,
attn_dropout=attn_dropout,
ff_dropout=ff_dropout,
conv_dropout=conv_dropout,
conv_causal=conv_causal,
)
def forward(
self,
hidden_states,
attention_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
timestep=None,
):
return super().forward(x=hidden_states, mask=attention_mask.bool())
class Decoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
channels=(256, 256),
dropout=0.05,
attention_head_dim=64,
n_blocks=1,
num_mid_blocks=2,
num_heads=4,
act_fn="snake",
down_block_type="transformer",
mid_block_type="transformer",
up_block_type="transformer",
):
super().__init__()
channels = tuple(channels)
self.in_channels = in_channels
self.out_channels = out_channels
self.time_embeddings = SinusoidalPosEmb(in_channels)
time_embed_dim = channels[0] * 4
self.time_mlp = TimestepEmbedding(
in_channels=in_channels,
time_embed_dim=time_embed_dim,
act_fn="silu",
)
self.down_blocks = nn.ModuleList([])
self.mid_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
output_channel = in_channels
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
input_channel = output_channel
output_channel = channels[i]
is_last = i == len(channels) - 1
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
self.get_block(
down_block_type,
output_channel,
attention_head_dim,
num_heads,
dropout,
act_fn,
)
for _ in range(n_blocks)
]
)
downsample = (
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
for i in range(num_mid_blocks):
input_channel = channels[-1]
out_channels = channels[-1]
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
self.get_block(
mid_block_type,
output_channel,
attention_head_dim,
num_heads,
dropout,
act_fn,
)
for _ in range(n_blocks)
]
)
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
channels = channels[::-1] + (channels[0],)
for i in range(len(channels) - 1):
input_channel = channels[i]
output_channel = channels[i + 1]
is_last = i == len(channels) - 2
resnet = ResnetBlock1D(
dim=2 * input_channel,
dim_out=output_channel,
time_emb_dim=time_embed_dim,
)
transformer_blocks = nn.ModuleList(
[
self.get_block(
up_block_type,
output_channel,
attention_head_dim,
num_heads,
dropout,
act_fn,
)
for _ in range(n_blocks)
]
)
upsample = (
Upsample1D(output_channel, use_conv_transpose=True)
if not is_last
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
self.final_block = Block1D(channels[-1], channels[-1])
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
self.initialize_weights()
# nn.init.normal_(self.final_proj.weight)
@staticmethod
def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
if block_type == "conformer":
block = ConformerWrapper(
dim=dim,
dim_head=attention_head_dim,
heads=num_heads,
ff_mult=1,
conv_expansion_factor=2,
ff_dropout=dropout,
attn_dropout=dropout,
conv_dropout=dropout,
conv_kernel_size=31,
)
elif block_type == "transformer":
block = BasicTransformerBlock(
dim=dim,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
else:
raise ValueError(f"Unknown block type {block_type}")
return block
def initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.GroupNorm):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x, mask, mu, t, spks=None, cond=None):
"""Forward pass of the UNet1DConditional model.
Args:
x (torch.Tensor): shape (batch_size, in_channels, time)
mask (_type_): shape (batch_size, 1, time)
t (_type_): shape (batch_size)
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
cond (_type_, optional): placeholder for future use. Defaults to None.
Raises:
ValueError: _description_
ValueError: _description_
Returns:
_type_: _description_
"""
t = self.time_embeddings(t)
t = self.time_mlp(t)
x = pack([x, mu], "b * t")[0]
if spks is not None:
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
x = pack([x, spks], "b * t")[0]
hiddens = []
masks = [mask]
for resnet, transformer_blocks, downsample in self.down_blocks:
mask_down = masks[-1]
x = resnet(x, mask_down, t)
x = rearrange(x, "b c t -> b t c")
mask_down = rearrange(mask_down, "b 1 t -> b t")
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=mask_down,
timestep=t,
)
x = rearrange(x, "b t c -> b c t")
mask_down = rearrange(mask_down, "b t -> b 1 t")
hiddens.append(x) # Save hidden states for skip connections
x = downsample(x * mask_down)
masks.append(mask_down[:, :, ::2])
masks = masks[:-1]
mask_mid = masks[-1]
for resnet, transformer_blocks in self.mid_blocks:
x = resnet(x, mask_mid, t)
x = rearrange(x, "b c t -> b t c")
mask_mid = rearrange(mask_mid, "b 1 t -> b t")
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=mask_mid,
timestep=t,
)
x = rearrange(x, "b t c -> b c t")
mask_mid = rearrange(mask_mid, "b t -> b 1 t")
for resnet, transformer_blocks, upsample in self.up_blocks:
mask_up = masks.pop()
x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
x = rearrange(x, "b c t -> b t c")
mask_up = rearrange(mask_up, "b 1 t -> b t")
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=mask_up,
timestep=t,
)
x = rearrange(x, "b t c -> b c t")
mask_up = rearrange(mask_up, "b t -> b 1 t")
x = upsample(x * mask_up)
x = self.final_block(x, mask_up)
output = self.final_proj(x * mask_up)
return output * mask
class ConditionalDecoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
channels=(256, 256),
dropout=0.05,
attention_head_dim=64,
n_blocks=1,
num_mid_blocks=2,
num_heads=4,
act_fn="snake",
):
"""
This decoder requires an input with the same shape of the target. So, if your text content
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
"""
super().__init__()
channels = tuple(channels)
self.in_channels = in_channels
self.out_channels = out_channels
self.time_embeddings = SinusoidalPosEmb(in_channels)
time_embed_dim = channels[0] * 4
self.time_mlp = TimestepEmbedding(
in_channels=in_channels,
time_embed_dim=time_embed_dim,
act_fn="silu",
)
self.down_blocks = nn.ModuleList([])
self.mid_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
output_channel = in_channels
for i in range(len(channels)): # pylint: disable=consider-using-enumerate
input_channel = output_channel
output_channel = channels[i]
is_last = i == len(channels) - 1
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
downsample = (
Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
for _ in range(num_mid_blocks):
input_channel = channels[-1]
out_channels = channels[-1]
resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
channels = channels[::-1] + (channels[0],)
for i in range(len(channels) - 1):
input_channel = channels[i] * 2
output_channel = channels[i + 1]
is_last = i == len(channels) - 2
resnet = ResnetBlock1D(
dim=input_channel,
dim_out=output_channel,
time_emb_dim=time_embed_dim,
)
transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
dim=output_channel,
num_attention_heads=num_heads,
attention_head_dim=attention_head_dim,
dropout=dropout,
activation_fn=act_fn,
)
for _ in range(n_blocks)
]
)
upsample = (
Upsample1D(output_channel, use_conv_transpose=True)
if not is_last
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
)
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
self.final_block = Block1D(channels[-1], channels[-1])
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
self.initialize_weights()
def initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.GroupNorm):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x, mask, mu, t, spks=None, cond=None):
"""Forward pass of the UNet1DConditional model.
Args:
x (torch.Tensor): shape (batch_size, in_channels, time)
mask (_type_): shape (batch_size, 1, time)
t (_type_): shape (batch_size)
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
cond (_type_, optional): placeholder for future use. Defaults to None.
Raises:
ValueError: _description_
ValueError: _description_
Returns:
_type_: _description_
"""
t = self.time_embeddings(t).to(t.dtype)
t = self.time_mlp(t)
x = pack([x, mu], "b * t")[0]
if spks is not None:
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
x = pack([x, spks], "b * t")[0]
if cond is not None:
x = pack([x, cond], "b * t")[0]
hiddens = []
masks = [mask]
for resnet, transformer_blocks, downsample in self.down_blocks:
mask_down = masks[-1]
x = resnet(x, mask_down, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
hiddens.append(x) # Save hidden states for skip connections
x = downsample(x * mask_down)
masks.append(mask_down[:, :, ::2])
masks = masks[:-1]
mask_mid = masks[-1]
for resnet, transformer_blocks in self.mid_blocks:
x = resnet(x, mask_mid, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
for resnet, transformer_blocks, upsample in self.up_blocks:
mask_up = masks.pop()
skip = hiddens.pop()
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
x = resnet(x, mask_up, t)
x = rearrange(x, "b c t -> b t c").contiguous()
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
for transformer_block in transformer_blocks:
x = transformer_block(
hidden_states=x,
attention_mask=attn_mask,
timestep=t,
)
x = rearrange(x, "b t c -> b c t").contiguous()
x = upsample(x * mask_up)
x = self.final_block(x, mask_up)
output = self.final_proj(x * mask_up)
return output * mask