|
import logging
|
|
import random
|
|
from typing import Dict, Optional
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
from omegaconf import DictConfig
|
|
from VietTTS.utils.mask import make_pad_mask
|
|
|
|
|
|
class MaskedDiffWithXvec(torch.nn.Module):
|
|
def __init__(self,
|
|
input_size: int = 512,
|
|
output_size: int = 80,
|
|
spk_embed_dim: int = 192,
|
|
output_type: str = "mel",
|
|
vocab_size: int = 4096,
|
|
input_frame_rate: int = 50,
|
|
only_mask_loss: bool = True,
|
|
encoder: torch.nn.Module = None,
|
|
length_regulator: torch.nn.Module = None,
|
|
decoder: torch.nn.Module = None,
|
|
decoder_conf: Dict = {
|
|
'in_channels': 240,
|
|
'out_channel': 80,
|
|
'spk_emb_dim': 80,
|
|
'n_spks': 1,
|
|
'cfm_params': DictConfig({
|
|
'sigma_min': 1e-06,
|
|
'solver': 'euler',
|
|
't_scheduler': 'cosine',
|
|
'training_cfg_rate': 0.2,
|
|
'inference_cfg_rate': 0.7,
|
|
'reg_loss_type': 'l1'
|
|
}),
|
|
'decoder_params': {
|
|
'channels': [256, 256],
|
|
'dropout': 0.0,
|
|
'attention_head_dim': 64,
|
|
'n_blocks': 4,
|
|
'num_mid_blocks': 12,
|
|
'num_heads': 8,
|
|
'act_fn': 'gelu'
|
|
}
|
|
},
|
|
mel_feat_conf: Dict = {
|
|
'n_fft': 1024,
|
|
'num_mels': 80,
|
|
'sampling_rate': 22050,
|
|
'hop_size': 256,
|
|
'win_size': 1024,
|
|
'fmin': 0,
|
|
'fmax': 8000
|
|
}
|
|
):
|
|
super().__init__()
|
|
self.input_size = input_size
|
|
self.output_size = output_size
|
|
self.decoder_conf = decoder_conf
|
|
self.mel_feat_conf = mel_feat_conf
|
|
self.vocab_size = vocab_size
|
|
self.output_type = output_type
|
|
self.input_frame_rate = input_frame_rate
|
|
logging.info(f"input frame rate={self.input_frame_rate}")
|
|
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
|
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
|
self.encoder = encoder
|
|
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
|
self.decoder = decoder
|
|
self.length_regulator = length_regulator
|
|
self.only_mask_loss = only_mask_loss
|
|
|
|
def forward(
|
|
self,
|
|
batch: dict,
|
|
device: torch.device,
|
|
) -> Dict[str, Optional[torch.Tensor]]:
|
|
token = batch['speech_token'].to(device)
|
|
token_len = batch['speech_token_len'].to(device)
|
|
feat = batch['speech_feat'].to(device)
|
|
feat_len = batch['speech_feat_len'].to(device)
|
|
embedding = batch['embedding'].to(device)
|
|
|
|
|
|
embedding = F.normalize(embedding, dim=1)
|
|
embedding = self.spk_embed_affine_layer(embedding)
|
|
|
|
|
|
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
|
|
|
|
|
h, h_lengths = self.encoder(token, token_len)
|
|
h = self.encoder_proj(h)
|
|
h, h_lengths = self.length_regulator(h, feat_len)
|
|
|
|
|
|
conds = torch.zeros(feat.shape, device=token.device)
|
|
for i, j in enumerate(feat_len):
|
|
if random.random() < 0.5:
|
|
continue
|
|
index = random.randint(0, int(0.3 * j))
|
|
conds[i, :index] = feat[i, :index]
|
|
conds = conds.transpose(1, 2)
|
|
|
|
mask = (~make_pad_mask(feat_len)).to(h)
|
|
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
|
loss, _ = self.decoder.compute_loss(
|
|
feat.transpose(1, 2).contiguous(),
|
|
mask.unsqueeze(1),
|
|
h.transpose(1, 2).contiguous(),
|
|
embedding,
|
|
cond=conds
|
|
)
|
|
return {'loss': loss}
|
|
|
|
@torch.inference_mode()
|
|
def inference(self,
|
|
token,
|
|
token_len,
|
|
prompt_token,
|
|
prompt_token_len,
|
|
prompt_feat,
|
|
prompt_feat_len,
|
|
embedding):
|
|
assert token.shape[0] == 1
|
|
|
|
embedding = F.normalize(embedding, dim=1)
|
|
embedding = self.spk_embed_affine_layer(embedding)
|
|
|
|
|
|
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
|
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
|
|
|
|
|
h, h_lengths = self.encoder(token, token_len)
|
|
h = self.encoder_proj(h)
|
|
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
|
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
|
|
|
|
|
|
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
|
|
conds[:, :mel_len1] = prompt_feat
|
|
conds = conds.transpose(1, 2)
|
|
|
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
|
feat = self.decoder(
|
|
mu=h.transpose(1, 2).contiguous(),
|
|
mask=mask.unsqueeze(1),
|
|
spks=embedding,
|
|
cond=conds,
|
|
n_timesteps=10
|
|
)
|
|
feat = feat[:, :, mel_len1:]
|
|
assert feat.shape[2] == mel_len2
|
|
return feat
|
|
|