|
from loguru import logger
|
|
import torch
|
|
import numpy as np
|
|
import threading
|
|
import time
|
|
from torch.nn import functional as F
|
|
from contextlib import nullcontext
|
|
import uuid
|
|
from VietTTS.utils.common import fade_in_out_audio
|
|
|
|
class TTSModel:
|
|
def __init__(
|
|
self,
|
|
llm: torch.nn.Module,
|
|
flow: torch.nn.Module,
|
|
hift: torch.nn.Module
|
|
):
|
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
self.llm = llm
|
|
self.flow = flow
|
|
self.hift = hift
|
|
self.token_min_hop_len = 2 * self.flow.input_frame_rate
|
|
self.token_max_hop_len = 4 * self.flow.input_frame_rate
|
|
self.token_overlap_len = 20
|
|
|
|
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
|
|
self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
|
|
|
self.mel_cache_len = 20
|
|
self.source_cache_len = int(self.mel_cache_len * 256)
|
|
|
|
self.speech_window = np.hamming(2 * self.source_cache_len)
|
|
|
|
self.stream_scale_factor = 1
|
|
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
self.lock = threading.Lock()
|
|
|
|
self.tts_speech_token_dict = {}
|
|
self.llm_end_dict = {}
|
|
self.mel_overlap_dict = {}
|
|
self.hift_cache_dict = {}
|
|
|
|
def load(self, llm_model, flow_model, hift_model):
|
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
|
self.llm.to(self.device).eval()
|
|
self.llm.half()
|
|
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
|
self.flow.to(self.device).eval()
|
|
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
|
self.hift.to(self.device).eval()
|
|
|
|
def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
|
|
llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
|
|
self.llm.text_encoder = llm_text_encoder
|
|
llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
|
|
self.llm.llm = llm_llm
|
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
|
self.flow.encoder = flow_encoder
|
|
|
|
def load_onnx(self, flow_decoder_estimator_model):
|
|
import onnxruntime
|
|
option = onnxruntime.SessionOptions()
|
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
option.intra_op_num_threads = 1
|
|
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
|
del self.flow.decoder.estimator
|
|
self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
|
|
|
|
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
|
with self.llm_context:
|
|
for i in self.llm.inference(
|
|
text=text.to(self.device),
|
|
text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
|
prompt_text=prompt_text.to(self.device),
|
|
prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
|
prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
embedding=llm_embedding.to(self.device).half()
|
|
):
|
|
self.tts_speech_token_dict[uuid].append(i)
|
|
self.llm_end_dict[uuid] = True
|
|
|
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
|
tts_mel = self.flow.inference(
|
|
token=token.to(self.device),
|
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
prompt_token=prompt_token.to(self.device),
|
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
prompt_feat=prompt_feat.to(self.device),
|
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
embedding=embedding.to(self.device)
|
|
)
|
|
|
|
if self.hift_cache_dict[uuid] is not None:
|
|
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
|
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
else:
|
|
hift_cache_source = torch.zeros(1, 1, 0)
|
|
|
|
if finalize is False:
|
|
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
|
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
|
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
self.hift_cache_dict[uuid] = {
|
|
'mel': tts_mel[:, :, -self.mel_cache_len:],
|
|
'source': tts_source[:, :, -self.source_cache_len:],
|
|
'speech': tts_speech[:, -self.source_cache_len:]
|
|
}
|
|
tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
else:
|
|
if speed != 1.0:
|
|
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
|
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
|
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
|
tts_speech = fade_in_out_audio(tts_speech)
|
|
return tts_speech
|
|
|
|
def tts(
|
|
self,
|
|
text: str,
|
|
flow_embedding: torch.Tensor,
|
|
llm_embedding: torch.Tensor=torch.zeros(0, 192),
|
|
prompt_text: torch.Tensor=torch.zeros(1, 0, dtype=torch.int32),
|
|
llm_prompt_speech_token: torch.Tensor=torch.zeros(1, 0, dtype=torch.int32),
|
|
flow_prompt_speech_token: torch.Tensor=torch.zeros(1, 0, dtype=torch.int32),
|
|
prompt_speech_feat: torch.Tensor=torch.zeros(1, 0, 80),
|
|
stream: bool=False,
|
|
speed: float=1.0,
|
|
**kwargs
|
|
):
|
|
|
|
this_uuid = str(uuid.uuid1())
|
|
with self.lock:
|
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
|
self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = None, None
|
|
|
|
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
|
p.start()
|
|
|
|
if stream:
|
|
token_hop_len = self.token_min_hop_len
|
|
while True:
|
|
time.sleep(0.01)
|
|
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]).unsqueeze(dim=0)
|
|
this_tts_speech = self.token2wav(
|
|
token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token,
|
|
prompt_feat=prompt_speech_feat,
|
|
embedding=flow_embedding,
|
|
uuid=this_uuid,
|
|
finalize=False
|
|
)
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
with self.lock:
|
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
|
|
|
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
|
break
|
|
p.join()
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
this_tts_speech = self.token2wav(
|
|
token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token,
|
|
prompt_feat=prompt_speech_feat,
|
|
embedding=flow_embedding,
|
|
uuid=this_uuid,
|
|
finalize=True
|
|
)
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
else:
|
|
p.join()
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
this_tts_speech = self.token2wav(
|
|
token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token,
|
|
prompt_feat=prompt_speech_feat,
|
|
embedding=flow_embedding,
|
|
uuid=this_uuid,
|
|
finalize=True,
|
|
speed=speed
|
|
)
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
|
|
with self.lock:
|
|
self.tts_speech_token_dict.pop(this_uuid)
|
|
self.llm_end_dict.pop(this_uuid)
|
|
self.mel_overlap_dict.pop(this_uuid)
|
|
self.hift_cache_dict.pop(this_uuid)
|
|
|
|
def vc(
|
|
self,
|
|
source_speech_token: torch.Tensor,
|
|
flow_prompt_speech_token: torch.Tensor,
|
|
prompt_speech_feat: torch.Tensor,
|
|
flow_embedding: torch.Tensor,
|
|
stream: bool=False,
|
|
speed: float=1.0,
|
|
**kwargs
|
|
):
|
|
this_uuid = str(uuid.uuid1())
|
|
with self.lock:
|
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
|
|
self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = None, None
|
|
|
|
if stream:
|
|
token_hop_len = self.token_min_hop_len
|
|
while True:
|
|
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
|
|
.unsqueeze(dim=0)
|
|
this_tts_speech = self.token2wav(
|
|
token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token,
|
|
prompt_feat=prompt_speech_feat,
|
|
embedding=flow_embedding,
|
|
uuid=this_uuid,
|
|
finalize=False
|
|
)
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
with self.lock:
|
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
|
|
|
token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
|
break
|
|
|
|
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid], dim=1).unsqueeze(dim=0)
|
|
this_tts_speech = self.token2wav(
|
|
token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token,
|
|
prompt_feat=prompt_speech_feat,
|
|
embedding=flow_embedding,
|
|
uuid=this_uuid,
|
|
finalize=True
|
|
)
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
else:
|
|
|
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
|
this_tts_speech = self.token2wav(
|
|
token=this_tts_speech_token,
|
|
prompt_token=flow_prompt_speech_token,
|
|
prompt_feat=prompt_speech_feat,
|
|
embedding=flow_embedding,
|
|
uuid=this_uuid,
|
|
finalize=True,
|
|
speed=speed
|
|
)
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
|
|
with self.lock:
|
|
self.tts_speech_token_dict.pop(this_uuid)
|
|
self.llm_end_dict.pop(this_uuid)
|
|
self.mel_overlap_dict.pop(this_uuid)
|
|
self.hift_cache_dict.pop(this_uuid)
|
|
|