#!/usr/bin/env python3 import os import sys import json from pathlib import Path # single thread doubles cuda performance - needs to be set before torch import if any(arg.startswith("--execution-provider") for arg in sys.argv): os.environ["OMP_NUM_THREADS"] = "1" # reduce tensorflow log level os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import warnings from typing import List import platform import signal import shutil import argparse import onnxruntime import tensorflow import roop.globals import roop.metadata # import roop.ui as ui from roop.predictor import predict_image, predict_video from roop.processors.frame.core import get_frame_processors_modules from roop.utilities import ( has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path, resolve_relative_path, ) warnings.filterwarnings("ignore", category=FutureWarning, module="insightface") warnings.filterwarnings("ignore", category=UserWarning, module="torchvision") CONFIG_PATH = Path(__file__).parent / "model_config.json" def load_model_path(): default_model_path = resolve_relative_path("../models/inswapper/inswapper_128.onnx") if CONFIG_PATH.exists(): try: with CONFIG_PATH.open("r") as f: config = json.load(f) model_path = config.get("model_path") if model_path and os.path.exists(model_path): print(f"[CORE] Loaded model path from config: {model_path}") return model_path else: print(f"[CORE] Invalid model path in config: {model_path}, using default: {default_model_path}") except Exception as e: print(f"[CORE] Error reading model config: {str(e)}, using default: {default_model_path}") else: print(f"[CORE] Model config not found at {CONFIG_PATH}, using default: {default_model_path}") return default_model_path def parse_args() -> None: signal.signal(signal.SIGINT, lambda signal_number, frame: destroy()) program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100)) program.add_argument("-s", "--source", help="select an source image", dest="source_path") program.add_argument("-t", "--target", help="select an target image or video", dest="target_path") program.add_argument("-o", "--output", help="select output file or directory", dest="output_path") program.add_argument( "--frame-processor", help="frame processors (choices: face_swapper, face_enhancer, ...)", dest="frame_processor", default=["face_swapper"], nargs="+", ) program.add_argument("--keep-fps", help="keep target fps", dest="keep_fps", action="store_true") program.add_argument("--keep-frames", help="keep temporary frames", dest="keep_frames", action="store_true") program.add_argument("--skip-audio", help="skip target audio", dest="skip_audio", action="store_true") program.add_argument("--many-faces", help="process every face", dest="many_faces", action="store_true") program.add_argument( "--reference-face-position", help="position of the reference face", dest="reference_face_position", type=int, default=0 ) program.add_argument( "--reference-frame-number", help="number of the reference frame", dest="reference_frame_number", type=int, default=0 ) program.add_argument( "--similar-face-distance", help="face distance used for recognition", dest="similar_face_distance", type=float, default=0.85 ) program.add_argument( "--temp-frame-format", help="image format used for frame extraction", dest="temp_frame_format", default="png", choices=["jpg", "png"], ) program.add_argument( "--temp-frame-quality", help="image quality used for frame extraction", dest="temp_frame_quality", type=int, default=0, choices=range(101), metavar="[0-100]", ) program.add_argument( "--output-video-encoder", help="encoder used for the output video", dest="output_video_encoder", default="libx264", choices=["libx264", "libx265", "libvpx-vp9", "h264_nvenc", "hevc_nvenc"], ) program.add_argument( "--output-video-quality", help="quality used for the output video", dest="output_video_quality", type=int, default=35, choices=range(101), metavar="[0-100]", ) program.add_argument("--max-memory", help="maximum amount of RAM in GB", dest="max_memory", type=int) program.add_argument( "--execution-provider", help="available execution provider (choices: cpu, ...)", dest="execution_provider", default=["cpu"], choices=suggest_execution_providers(), nargs="+", ) program.add_argument( "--execution-threads", help="number of execution threads", dest="execution_threads", type=int, default=suggest_execution_threads() ) program.add_argument("--model-path", help="path to face swapper model", dest="model_path") program.add_argument("-v", "--version", action="version", version=f"{roop.metadata.name} {roop.metadata.version}") args = program.parse_args() roop.globals.source_path = args.source_path roop.globals.target_path = args.target_path roop.globals.output_path = normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path) roop.globals.headless = ( roop.globals.source_path is not None and roop.globals.target_path is not None and roop.globals.output_path is not None ) roop.globals.frame_processors = args.frame_processor roop.globals.keep_fps = args.keep_fps roop.globals.keep_frames = args.keep_frames roop.globals.skip_audio = args.skip_audio roop.globals.many_faces = args.many_faces roop.globals.reference_face_position = args.reference_face_position roop.globals.reference_frame_number = args.reference_frame_number roop.globals.similar_face_distance = args.similar_face_distance roop.globals.temp_frame_format = args.temp_frame_format roop.globals.temp_frame_quality = args.temp_frame_quality roop.globals.output_video_encoder = args.output_video_encoder roop.globals.output_video_quality = args.output_video_quality roop.globals.max_memory = args.max_memory roop.globals.execution_providers = decode_execution_providers(args.execution_provider) roop.globals.execution_threads = args.execution_threads # Thiết lập model_path: ưu tiên tham số dòng lệnh, nếu không thì đọc từ config if args.model_path and os.path.exists(args.model_path): roop.globals.model_path = args.model_path print(f"[CORE] Using model path from command line: {roop.globals.model_path}") else: roop.globals.model_path = load_model_path() def encode_execution_providers(execution_providers: List[str]) -> List[str]: return [execution_provider.replace("ExecutionProvider", "").lower() for execution_provider in execution_providers] def decode_execution_providers(execution_providers: List[str]) -> List[str]: return [ provider for provider, encoded_execution_provider in zip( onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()) ) if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers) ] def suggest_execution_providers() -> List[str]: return encode_execution_providers(onnxruntime.get_available_providers()) def suggest_execution_threads() -> int: if "CUDAExecutionProvider" in onnxruntime.get_available_providers(): return 8 return 1 def limit_resources() -> None: gpus = tensorflow.config.experimental.list_physical_devices("GPU") for gpu in gpus: tensorflow.config.experimental.set_virtual_device_configuration( gpu, [tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)] ) if roop.globals.max_memory: memory = roop.globals.max_memory * 1024**3 if platform.system().lower() == "darwin": memory = roop.globals.max_memory * 1024**6 if platform.system().lower() == "windows": import ctypes kernel32 = ctypes.windll.kernel32 kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory)) else: import resource resource.setrlimit(resource.RLIMIT_DATA, (memory, memory)) def pre_check() -> bool: if sys.version_info < (3, 9): update_status("Python version is not supported - please upgrade to 3.9 or higher.") return False if not shutil.which("ffmpeg"): update_status("ffmpeg is not installed.") return False return True def update_status(message: str, scope: str = "ROOP.CORE") -> None: print(f"[{scope}] {message}") # if not roop.globals.headless: # ui.update_status(message) def start() -> None: print(f"[CORE] Starting with model: {roop.globals.model_path}") for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): if not frame_processor.pre_start(): return if has_image_extension(roop.globals.target_path): if predict_image(roop.globals.target_path): destroy() shutil.copy2(roop.globals.target_path, roop.globals.output_path) for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): update_status("Progressing...", frame_processor.NAME) frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path) frame_processor.post_process() if is_image(roop.globals.output_path): update_status("Processing to image succeed!") else: update_status("Processing to image failed!") return if predict_video(roop.globals.target_path): destroy() update_status("Creating temporary resources...") create_temp(roop.globals.target_path) if roop.globals.keep_fps: fps = detect_fps(roop.globals.target_path) update_status(f"Extracting frames with {fps} FPS...") extract_frames(roop.globals.target_path, fps) else: update_status("Extracting frames with 30 FPS...") extract_frames(roop.globals.target_path) temp_frame_paths = get_temp_frame_paths(roop.globals.target_path) if temp_frame_paths: for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): update_status("Progressing...", frame_processor.NAME) frame_processor.process_video(roop.globals.source_path, temp_frame_paths) frame_processor.post_process() else: update_status("Frames not found...") return if roop.globals.keep_fps: fps = detect_fps(roop.globals.target_path) update_status(f"Creating video with {fps} FPS...") create_video(roop.globals.target_path, fps) else: update_status("Creating video with 30 FPS...") create_video(roop.globals.target_path) if roop.globals.skip_audio: move_temp(roop.globals.target_path, roop.globals.output_path) update_status("Skipping audio...") else: if roop.globals.keep_fps: update_status("Restoring audio...") else: update_status("Restoring audio might cause issues as fps are not kept...") restore_audio(roop.globals.target_path, roop.globals.output_path) update_status("Cleaning temporary resources...") clean_temp(roop.globals.target_path) if is_video(roop.globals.output_path): update_status("Processing to video succeed!") else: update_status("Processing to video failed!") def destroy() -> None: if roop.globals.target_path: clean_temp(roop.globals.target_path) sys.exit() def run() -> None: parse_args() if not pre_check(): return for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): if not frame_processor.pre_check(): return limit_resources() if roop.globals.headless: start() # else: # window = ui.init(start, destroy) # window.mainloop()