import os from tqdm import tqdm import torch import numpy as np import random import scipy.io as scio import src.utils.audio as audio def crop_pad_audio(wav, audio_length): if len(wav) > audio_length: wav = wav[:audio_length] elif len(wav) < audio_length: wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0) return wav def parse_audio_length(audio_length, sr, fps): bit_per_frames = sr / fps num_frames = max(int(audio_length / bit_per_frames), 30) # Ít nhất 30 frames return int(num_frames * bit_per_frames), num_frames def generate_blink_seq(num_frames): ratio = np.zeros((num_frames,1)) frame_id = 0 while frame_id in range(num_frames): start = 80 if frame_id+start+9 <= num_frames - 1: ratio[frame_id+start:frame_id+start+9, 0] = [0.5,0.6,0.7,0.9,1, 0.9, 0.7,0.6,0.5] frame_id = frame_id+start+9 else: break return ratio def generate_blink_seq_randomly(num_frames): ratio = np.zeros((num_frames,1)) if num_frames <= 20: return ratio # Ensure valid range for random selection min_start = min(10, num_frames) max_start = min(int(num_frames/2), 70) # Fix case where range would be invalid if min_start >= max_start: max_start = min_start + 5 # Add small buffer try: start = random.choice(range(min_start, max_start)) except IndexError: return ratio # Return zeros if still can't generate frame_id = 0 while frame_id in range(num_frames): if frame_id+start+5 <= num_frames - 1: ratio[frame_id+start:frame_id+start+5, 0] = [0.5, 0.9, 1.0, 0.9, 0.5] frame_id = frame_id+start+5 else: break return ratio def get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=False, idlemode=False, length_of_audio=False, use_blink=True): syncnet_mel_step_size = 16 fps = 25 pic_name = os.path.splitext(os.path.split(first_coeff_path)[-1])[0] audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] if idlemode: num_frames = int(length_of_audio * 25) indiv_mels = np.zeros((num_frames, 80, 16)) else: try: wav = audio.load_wav(audio_path, 16000) wav_length, num_frames = parse_audio_length(len(wav), 16000, 25) # Ensure minimum number of frames if num_frames < 5: # Absolute minimum for processing raise ValueError(f"Audio too short: only {num_frames} frames generated") wav = crop_pad_audio(wav, wav_length) orig_mel = audio.melspectrogram(wav).T spec = orig_mel.copy() indiv_mels = [] for i in tqdm(range(num_frames), 'mel:'): start_frame_num = i-2 start_idx = int(80. * (start_frame_num / float(fps))) end_idx = start_idx + syncnet_mel_step_size seq = list(range(start_idx, end_idx)) seq = [min(max(item, 0), orig_mel.shape[0]-1) for item in seq] m = spec[seq, :] indiv_mels.append(m.T) indiv_mels = np.asarray(indiv_mels) except Exception as e: raise RuntimeError(f"Audio processing failed: {str(e)}") # More robust blink sequence generation try: ratio = generate_blink_seq_randomly(num_frames) except Exception as e: print(f"Warning: Blink sequence generation failed, using zeros: {str(e)}") ratio = np.zeros((num_frames,1)) try: source_semantics_dict = scio.loadmat(first_coeff_path) ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] ref_coeff = np.repeat(ref_coeff, num_frames, axis=0) except Exception as e: raise RuntimeError(f"Failed to load source semantics: {str(e)}") if ref_eyeblink_coeff_path is not None: try: ratio[:num_frames] = 0 refeyeblink_coeff_dict = scio.loadmat(ref_eyeblink_coeff_path) refeyeblink_coeff = refeyeblink_coeff_dict['coeff_3dmm'][:,:64] refeyeblink_num_frames = refeyeblink_coeff.shape[0] if refeyeblink_num_frames < num_frames: div = num_frames//refeyeblink_num_frames re = num_frames%refeyeblink_num_frames refeyeblink_coeff_list = [refeyeblink_coeff for i in range(div)] refeyeblink_coeff_list.append(refeyeblink_coeff[:re, :64]) refeyeblink_coeff = np.concatenate(refeyeblink_coeff_list, axis=0) ref_coeff[:, :64] = refeyeblink_coeff[:num_frames, :64] except Exception as e: print(f"Warning: Eyeblink reference processing failed: {str(e)}") # Convert to tensors try: indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1).unsqueeze(0) ratio = torch.FloatTensor(ratio).unsqueeze(0) if use_blink else torch.FloatTensor(ratio).unsqueeze(0).fill_(0.) ref_coeff = torch.FloatTensor(ref_coeff).unsqueeze(0) indiv_mels = indiv_mels.to(device) ratio = ratio.to(device) ref_coeff = ref_coeff.to(device) except Exception as e: raise RuntimeError(f"Tensor conversion failed: {str(e)}") return { 'indiv_mels': indiv_mels, 'ref': ref_coeff, 'num_frames': num_frames, 'ratio_gt': ratio, 'audio_name': audio_name, 'pic_name': pic_name }