File size: 14,318 Bytes
813828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import argparse
import os
import sys
import tempfile

import gradio as gr
import librosa.display
import numpy as np

import os
import torch
import torchaudio
import traceback
from TTS.demos.xtts_ft_demo.utils.formatter import format_audio_list
from TTS.demos.xtts_ft_demo.utils.gpt_train import train_gpt

from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts


def clear_gpu_cache():
    # clear the GPU cache
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

XTTS_MODEL = None
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
    global XTTS_MODEL
    clear_gpu_cache()
    if not xtts_checkpoint or not xtts_config or not xtts_vocab:
        return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
    config = XttsConfig()
    config.load_json(xtts_config)
    XTTS_MODEL = Xtts.init_from_config(config)
    print("Loading XTTS model! ")
    XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
    if torch.cuda.is_available():
        XTTS_MODEL.cuda()

    print("Model Loaded!")
    return "Model Loaded!"

def run_tts(lang, tts_text, speaker_audio_file):
    if XTTS_MODEL is None or not speaker_audio_file:
        return "You need to run the previous step to load the model !!", None, None

    gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
    out = XTTS_MODEL.inference(
        text=tts_text,
        language=lang,
        gpt_cond_latent=gpt_cond_latent,
        speaker_embedding=speaker_embedding,
        temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
        length_penalty=XTTS_MODEL.config.length_penalty,
        repetition_penalty=XTTS_MODEL.config.repetition_penalty,
        top_k=XTTS_MODEL.config.top_k,
        top_p=XTTS_MODEL.config.top_p,
    )

    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
        out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
        out_path = fp.name
        torchaudio.save(out_path, out["wav"], 24000)

    return "Speech generated !", out_path, speaker_audio_file




# define a logger to redirect 
class Logger:
    def __init__(self, filename="log.out"):
        self.log_file = filename
        self.terminal = sys.stdout
        self.log = open(self.log_file, "w")

    def write(self, message):
        self.terminal.write(message)
        self.log.write(message)

    def flush(self):
        self.terminal.flush()
        self.log.flush()

    def isatty(self):
        return False

# redirect stdout and stderr to a file
sys.stdout = Logger()
sys.stderr = sys.stdout


# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
import logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(message)s",
    handlers=[
        logging.StreamHandler(sys.stdout)
    ]
)

def read_logs():
    sys.stdout.flush()
    with open(sys.stdout.log_file, "r") as f:
        return f.read()


if __name__ == "__main__":

    parser = argparse.ArgumentParser(
        description="""XTTS fine-tuning demo\n\n"""
        """
        Example runs:
        python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port 
        """,
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        "--port",
        type=int,
        help="Port to run the gradio demo. Default: 5003",
        default=5003,
    )
    parser.add_argument(
        "--out_path",
        type=str,
        help="Output path (where data and checkpoints will be saved) Default: /tmp/xtts_ft/",
        default="/tmp/xtts_ft/",
    )

    parser.add_argument(
        "--num_epochs",
        type=int,
        help="Number of epochs to train. Default: 10",
        default=10,
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        help="Batch size. Default: 4",
        default=4,
    )
    parser.add_argument(
        "--grad_acumm",
        type=int,
        help="Grad accumulation steps. Default: 1",
        default=1,
    )
    parser.add_argument(
        "--max_audio_length",
        type=int,
        help="Max permitted audio size in seconds. Default: 11",
        default=11,
    )

    args = parser.parse_args()

    with gr.Blocks() as demo:
        with gr.Tab("1 - Data processing"):
            out_path = gr.Textbox(
                label="Output path (where data and checkpoints will be saved):",
                value=args.out_path,
            )
            # upload_file = gr.Audio(
            #     sources="upload",
            #     label="Select here the audio files that you want to use for XTTS trainining !",
            #     type="filepath",
            # )
            upload_file = gr.File(
                file_count="multiple",
                label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)",
            )
            lang = gr.Dropdown(
                label="Dataset Language",
                value="en",
                choices=[
                    "en",
                    "es",
                    "fr",
                    "de",
                    "it",
                    "pt",
                    "pl",
                    "tr",
                    "ru",
                    "nl",
                    "cs",
                    "ar",
                    "zh",
                    "hu",
                    "ko",
                    "ja"
                ],
            )
            progress_data = gr.Label(
                label="Progress:"
            )
            logs = gr.Textbox(
                label="Logs:",
                interactive=False,
            )
            demo.load(read_logs, None, logs, every=1)

            prompt_compute_btn = gr.Button(value="Step 1 - Create dataset")
        
            def preprocess_dataset(audio_path, language, out_path, progress=gr.Progress(track_tqdm=True)):
                clear_gpu_cache()
                out_path = os.path.join(out_path, "dataset")
                os.makedirs(out_path, exist_ok=True)
                if audio_path is None:
                    return "You should provide one or multiple audio files! If you provided it, probably the upload of the files is not finished yet!", "", ""
                else:
                    try:
                        train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, target_language=language, out_path=out_path, gradio_progress=progress)
                    except:
                        traceback.print_exc()
                        error = traceback.format_exc()
                        return f"The data processing was interrupted due an error !! Please check the console to verify the full error message! \n Error summary: {error}", "", ""

                clear_gpu_cache()

                # if audio total len is less than 2 minutes raise an error
                if audio_total_size < 120:
                    message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
                    print(message)
                    return message, "", ""

                print("Dataset Processed!")
                return "Dataset Processed!", train_meta, eval_meta

        with gr.Tab("2 - Fine-tuning XTTS Encoder"):
            train_csv = gr.Textbox(
                label="Train CSV:",
            )
            eval_csv = gr.Textbox(
                label="Eval CSV:",
            )
            num_epochs =  gr.Slider(
                label="Number of epochs:",
                minimum=1,
                maximum=100,
                step=1,
                value=args.num_epochs,
            )
            batch_size = gr.Slider(
                label="Batch size:",
                minimum=2,
                maximum=512,
                step=1,
                value=args.batch_size,
            )
            grad_acumm = gr.Slider(
                label="Grad accumulation steps:",
                minimum=2,
                maximum=128,
                step=1,
                value=args.grad_acumm,
            )
            max_audio_length = gr.Slider(
                label="Max permitted audio size in seconds:",
                minimum=2,
                maximum=20,
                step=1,
                value=args.max_audio_length,
            )
            progress_train = gr.Label(
                label="Progress:"
            )
            logs_tts_train = gr.Textbox(
                label="Logs:",
                interactive=False,
            )
            demo.load(read_logs, None, logs_tts_train, every=1)
            train_btn = gr.Button(value="Step 2 - Run the training")

            def train_model(language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
                clear_gpu_cache()
                if not train_csv or not eval_csv:
                    return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", ""
                try:
                    # convert seconds to waveform frames
                    max_audio_length = int(max_audio_length * 22050)
                    config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
                except:
                    traceback.print_exc()
                    error = traceback.format_exc()
                    return f"The training was interrupted due an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", ""

                # copy original files to avoid parameters changes issues
                os.system(f"cp {config_path} {exp_path}")
                os.system(f"cp {vocab_file} {exp_path}")

                ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
                print("Model training done!")
                clear_gpu_cache()
                return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint, speaker_wav

        with gr.Tab("3 - Inference"):
            with gr.Row():
                with gr.Column() as col1:
                    xtts_checkpoint = gr.Textbox(
                        label="XTTS checkpoint path:",
                        value="",
                    )
                    xtts_config = gr.Textbox(
                        label="XTTS config path:",
                        value="",
                    )

                    xtts_vocab = gr.Textbox(
                        label="XTTS vocab path:",
                        value="",
                    )
                    progress_load = gr.Label(
                        label="Progress:"
                    )
                    load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model")

                with gr.Column() as col2:
                    speaker_reference_audio = gr.Textbox(
                        label="Speaker reference audio:",
                        value="",
                    )
                    tts_language = gr.Dropdown(
                        label="Language",
                        value="en",
                        choices=[
                            "en",
                            "es",
                            "fr",
                            "de",
                            "it",
                            "pt",
                            "pl",
                            "tr",
                            "ru",
                            "nl",
                            "cs",
                            "ar",
                            "zh",
                            "hu",
                            "ko",
                            "ja",
                        ]
                    )
                    tts_text = gr.Textbox(
                        label="Input Text.",
                        value="This model sounds really good and above all, it's reasonably fast.",
                    )
                    tts_btn = gr.Button(value="Step 4 - Inference")

                with gr.Column() as col3:
                    progress_gen = gr.Label(
                        label="Progress:"
                    )
                    tts_output_audio = gr.Audio(label="Generated Audio.")
                    reference_audio = gr.Audio(label="Reference audio used.")

            prompt_compute_btn.click(
                fn=preprocess_dataset,
                inputs=[
                    upload_file,
                    lang,
                    out_path,
                ],
                outputs=[
                    progress_data,
                    train_csv,
                    eval_csv,
                ],
            )


            train_btn.click(
                fn=train_model,
                inputs=[
                    lang,
                    train_csv,
                    eval_csv,
                    num_epochs,
                    batch_size,
                    grad_acumm,
                    out_path,
                    max_audio_length,
                ],
                outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
            )
            
            load_btn.click(
                fn=load_model,
                inputs=[
                    xtts_checkpoint,
                    xtts_config,
                    xtts_vocab
                ],
                outputs=[progress_load],
            )

            tts_btn.click(
                fn=run_tts,
                inputs=[
                    tts_language,
                    tts_text,
                    speaker_reference_audio,
                ],
                outputs=[progress_gen, tts_output_audio, reference_audio],
            )

    demo.launch(
        share=True,
        debug=False,
        server_port=args.port,
        server_name="0.0.0.0"
    )