File size: 7,696 Bytes
813828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from dataclasses import dataclass, field
from typing import List

from TTS.tts.configs.shared_configs import BaseTTSConfig
from TTS.tts.models.delightful_tts import DelightfulTtsArgs, DelightfulTtsAudioConfig, VocoderConfig


@dataclass
class DelightfulTTSConfig(BaseTTSConfig):
    """
    Configuration class for the DelightfulTTS model.

    Attributes:
        model (str): Name of the model ("delightful_tts").
        audio (DelightfulTtsAudioConfig): Configuration for audio settings.
        model_args (DelightfulTtsArgs): Configuration for model arguments.
        use_attn_priors (bool): Whether to use attention priors.
        vocoder (VocoderConfig): Configuration for the vocoder.
        init_discriminator (bool): Whether to initialize the discriminator.
        steps_to_start_discriminator (int): Number of steps to start the discriminator.
        grad_clip (List[float]): Gradient clipping values.
        lr_gen (float): Learning rate for the  gan generator.
        lr_disc (float): Learning rate for the gan discriminator.
        lr_scheduler_gen (str): Name of the learning rate scheduler for the generator.
        lr_scheduler_gen_params (dict): Parameters for the learning rate scheduler for the generator.
        lr_scheduler_disc (str): Name of the learning rate scheduler for the discriminator.
        lr_scheduler_disc_params (dict): Parameters for the learning rate scheduler for the discriminator.
        scheduler_after_epoch (bool): Whether to schedule after each epoch.
        optimizer (str): Name of the optimizer.
        optimizer_params (dict): Parameters for the optimizer.
        ssim_loss_alpha (float): Alpha value for the SSIM loss.
        mel_loss_alpha (float): Alpha value for the mel loss.
        aligner_loss_alpha (float): Alpha value for the aligner loss.
        pitch_loss_alpha (float): Alpha value for the pitch loss.
        energy_loss_alpha (float): Alpha value for the energy loss.
        u_prosody_loss_alpha (float): Alpha value for the utterance prosody loss.
        p_prosody_loss_alpha (float): Alpha value for the phoneme prosody loss.
        dur_loss_alpha (float): Alpha value for the duration loss.
        char_dur_loss_alpha (float): Alpha value for the character duration loss.
        binary_align_loss_alpha (float): Alpha value for the binary alignment loss.
        binary_loss_warmup_epochs (int): Number of warm-up epochs for the binary loss.
        disc_loss_alpha (float): Alpha value for the discriminator loss.
        gen_loss_alpha (float): Alpha value for the generator loss.
        feat_loss_alpha (float): Alpha value for the feature loss.
        vocoder_mel_loss_alpha (float): Alpha value for the vocoder mel loss.
        multi_scale_stft_loss_alpha (float): Alpha value for the multi-scale STFT loss.
        multi_scale_stft_loss_params (dict): Parameters for the multi-scale STFT loss.
        return_wav (bool): Whether to return audio waveforms.
        use_weighted_sampler (bool): Whether to use a weighted sampler.
        weighted_sampler_attrs (dict): Attributes for the weighted sampler.
        weighted_sampler_multipliers (dict): Multipliers for the weighted sampler.
        r (int): Value for the `r` override.
        compute_f0 (bool): Whether to compute F0 values.
        f0_cache_path (str): Path to the F0 cache.
        attn_prior_cache_path (str): Path to the attention prior cache.
        num_speakers (int): Number of speakers.
        use_speaker_embedding (bool): Whether to use speaker embedding.
        speakers_file (str): Path to the speaker file.
        speaker_embedding_channels (int): Number of channels for the speaker embedding.
        language_ids_file (str): Path to the language IDs file.
    """

    model: str = "delightful_tts"

    # model specific params
    audio: DelightfulTtsAudioConfig = field(default_factory=DelightfulTtsAudioConfig)
    model_args: DelightfulTtsArgs = field(default_factory=DelightfulTtsArgs)
    use_attn_priors: bool = True

    # vocoder
    vocoder: VocoderConfig = field(default_factory=VocoderConfig)
    init_discriminator: bool = True

    # optimizer
    steps_to_start_discriminator: int = 200000
    grad_clip: List[float] = field(default_factory=lambda: [1000, 1000])
    lr_gen: float = 0.0002
    lr_disc: float = 0.0002
    lr_scheduler_gen: str = "ExponentialLR"
    lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
    lr_scheduler_disc: str = "ExponentialLR"
    lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
    scheduler_after_epoch: bool = True
    optimizer: str = "AdamW"
    optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01})

    # acoustic model loss params
    ssim_loss_alpha: float = 1.0
    mel_loss_alpha: float = 1.0
    aligner_loss_alpha: float = 1.0
    pitch_loss_alpha: float = 1.0
    energy_loss_alpha: float = 1.0
    u_prosody_loss_alpha: float = 0.5
    p_prosody_loss_alpha: float = 0.5
    dur_loss_alpha: float = 1.0
    char_dur_loss_alpha: float = 0.01
    binary_align_loss_alpha: float = 0.1
    binary_loss_warmup_epochs: int = 10

    # vocoder loss params
    disc_loss_alpha: float = 1.0
    gen_loss_alpha: float = 1.0
    feat_loss_alpha: float = 1.0
    vocoder_mel_loss_alpha: float = 10.0
    multi_scale_stft_loss_alpha: float = 2.5
    multi_scale_stft_loss_params: dict = field(
        default_factory=lambda: {
            "n_ffts": [1024, 2048, 512],
            "hop_lengths": [120, 240, 50],
            "win_lengths": [600, 1200, 240],
        }
    )

    # data loader params
    return_wav: bool = True
    use_weighted_sampler: bool = False
    weighted_sampler_attrs: dict = field(default_factory=lambda: {})
    weighted_sampler_multipliers: dict = field(default_factory=lambda: {})

    # overrides
    r: int = 1

    # dataset configs
    compute_f0: bool = True
    f0_cache_path: str = None
    attn_prior_cache_path: str = None

    # multi-speaker settings
    # use speaker embedding layer
    num_speakers: int = 0
    use_speaker_embedding: bool = False
    speakers_file: str = None
    speaker_embedding_channels: int = 256
    language_ids_file: str = None
    use_language_embedding: bool = False

    # use d-vectors
    use_d_vector_file: bool = False
    d_vector_file: str = None
    d_vector_dim: int = None

    # testing
    test_sentences: List[List[str]] = field(
        default_factory=lambda: [
            ["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."],
            ["Be a voice, not an echo."],
            ["I'm sorry Dave. I'm afraid I can't do that."],
            ["This cake is great. It's so delicious and moist."],
            ["Prior to November 22, 1963."],
        ]
    )

    def __post_init__(self):
        # Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there.
        if self.num_speakers > 0:
            self.model_args.num_speakers = self.num_speakers

        # speaker embedding settings
        if self.use_speaker_embedding:
            self.model_args.use_speaker_embedding = True
        if self.speakers_file:
            self.model_args.speakers_file = self.speakers_file

        # d-vector settings
        if self.use_d_vector_file:
            self.model_args.use_d_vector_file = True
        if self.d_vector_dim is not None and self.d_vector_dim > 0:
            self.model_args.d_vector_dim = self.d_vector_dim
        if self.d_vector_file:
            self.model_args.d_vector_file = self.d_vector_file