File size: 12,118 Bytes
813828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import copy
from abc import abstractmethod
from typing import Dict, Tuple

import torch
from coqpit import Coqpit
from torch import nn

from TTS.tts.layers.losses import TacotronLoss
from TTS.tts.models.base_tts import BaseTTS
from TTS.tts.utils.helpers import sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.generic_utils import format_aux_input
from TTS.utils.io import load_fsspec
from TTS.utils.training import gradual_training_scheduler


class BaseTacotron(BaseTTS):
    """Base class shared by Tacotron and Tacotron2"""

    def __init__(
        self,
        config: "TacotronConfig",
        ap: "AudioProcessor",
        tokenizer: "TTSTokenizer",
        speaker_manager: SpeakerManager = None,
    ):
        super().__init__(config, ap, tokenizer, speaker_manager)

        # pass all config fields as class attributes
        for key in config:
            setattr(self, key, config[key])

        # layers
        self.embedding = None
        self.encoder = None
        self.decoder = None
        self.postnet = None

        # init tensors
        self.embedded_speakers = None
        self.embedded_speakers_projected = None

        # global style token
        if self.gst and self.use_gst:
            self.decoder_in_features += self.gst.gst_embedding_dim  # add gst embedding dim
            self.gst_layer = None

        # Capacitron
        if self.capacitron_vae and self.use_capacitron_vae:
            self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim  # add capacitron embedding dim
            self.capacitron_vae_layer = None

        # additional layers
        self.decoder_backward = None
        self.coarse_decoder = None

    @staticmethod
    def _format_aux_input(aux_input: Dict) -> Dict:
        """Set missing fields to their default values"""
        if aux_input:
            return format_aux_input({"d_vectors": None, "speaker_ids": None}, aux_input)
        return None

    #############################
    # INIT FUNCTIONS
    #############################

    def _init_backward_decoder(self):
        """Init the backward decoder for Forward-Backward decoding."""
        self.decoder_backward = copy.deepcopy(self.decoder)

    def _init_coarse_decoder(self):
        """Init the coarse decoder for Double-Decoder Consistency."""
        self.coarse_decoder = copy.deepcopy(self.decoder)
        self.coarse_decoder.r_init = self.ddc_r
        self.coarse_decoder.set_r(self.ddc_r)

    #############################
    # CORE FUNCTIONS
    #############################

    @abstractmethod
    def forward(self):
        pass

    @abstractmethod
    def inference(self):
        pass

    def load_checkpoint(
        self, config, checkpoint_path, eval=False, cache=False
    ):  # pylint: disable=unused-argument, redefined-builtin
        """Load model checkpoint and set up internals.

        Args:
            config (Coqpi): model configuration.
            checkpoint_path (str): path to checkpoint file.
            eval (bool, optional): whether to load model for evaluation.
            cache (bool, optional): If True, cache the file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to False.
        """
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
        self.load_state_dict(state["model"])
        # TODO: set r in run-time by taking it from the new config
        if "r" in state:
            # set r from the state (for compatibility with older checkpoints)
            self.decoder.set_r(state["r"])
        elif "config" in state:
            # set r from config used at training time (for inference)
            self.decoder.set_r(state["config"]["r"])
        else:
            # set r from the new config (for new-models)
            self.decoder.set_r(config.r)
        if eval:
            self.eval()
            print(f" > Model's reduction rate `r` is set to: {self.decoder.r}")
            assert not self.training

    def get_criterion(self) -> nn.Module:
        """Get the model criterion used in training."""
        return TacotronLoss(self.config)

    @staticmethod
    def init_from_config(config: Coqpit):
        """Initialize model from config."""
        from TTS.utils.audio import AudioProcessor

        ap = AudioProcessor.init_from_config(config)
        tokenizer = TTSTokenizer.init_from_config(config)
        speaker_manager = SpeakerManager.init_from_config(config)
        return BaseTacotron(config, ap, tokenizer, speaker_manager)

    ##########################
    # TEST AND LOG FUNCTIONS #
    ##########################

    def test_run(self, assets: Dict) -> Tuple[Dict, Dict]:
        """Generic test run for `tts` models used by `Trainer`.

        You can override this for a different behaviour.

        Args:
            assets (dict): A dict of training assets. For `tts` models, it must include `{'audio_processor': ap}`.

        Returns:
            Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.
        """
        print(" | > Synthesizing test sentences.")
        test_audios = {}
        test_figures = {}
        test_sentences = self.config.test_sentences
        aux_inputs = self._get_test_aux_input()
        for idx, sen in enumerate(test_sentences):
            outputs_dict = synthesis(
                self,
                sen,
                self.config,
                "cuda" in str(next(self.parameters()).device),
                speaker_id=aux_inputs["speaker_id"],
                d_vector=aux_inputs["d_vector"],
                style_wav=aux_inputs["style_wav"],
                use_griffin_lim=True,
                do_trim_silence=False,
            )
            test_audios["{}-audio".format(idx)] = outputs_dict["wav"]
            test_figures["{}-prediction".format(idx)] = plot_spectrogram(
                outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False
            )
            test_figures["{}-alignment".format(idx)] = plot_alignment(
                outputs_dict["outputs"]["alignments"], output_fig=False
            )
        return {"figures": test_figures, "audios": test_audios}

    def test_log(
        self, outputs: dict, logger: "Logger", assets: dict, steps: int  # pylint: disable=unused-argument
    ) -> None:
        logger.test_audios(steps, outputs["audios"], self.ap.sample_rate)
        logger.test_figures(steps, outputs["figures"])

    #############################
    # COMMON COMPUTE FUNCTIONS
    #############################

    def compute_masks(self, text_lengths, mel_lengths):
        """Compute masks  against sequence paddings."""
        # B x T_in_max (boolean)
        input_mask = sequence_mask(text_lengths)
        output_mask = None
        if mel_lengths is not None:
            max_len = mel_lengths.max()
            r = self.decoder.r
            max_len = max_len + (r - (max_len % r)) if max_len % r > 0 else max_len
            output_mask = sequence_mask(mel_lengths, max_len=max_len)
        return input_mask, output_mask

    def _backward_pass(self, mel_specs, encoder_outputs, mask):
        """Run backwards decoder"""
        decoder_outputs_b, alignments_b, _ = self.decoder_backward(
            encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask
        )
        decoder_outputs_b = decoder_outputs_b.transpose(1, 2).contiguous()
        return decoder_outputs_b, alignments_b

    def _coarse_decoder_pass(self, mel_specs, encoder_outputs, alignments, input_mask):
        """Double Decoder Consistency"""
        T = mel_specs.shape[1]
        if T % self.coarse_decoder.r > 0:
            padding_size = self.coarse_decoder.r - (T % self.coarse_decoder.r)
            mel_specs = torch.nn.functional.pad(mel_specs, (0, 0, 0, padding_size, 0, 0))
        decoder_outputs_backward, alignments_backward, _ = self.coarse_decoder(
            encoder_outputs.detach(), mel_specs, input_mask
        )
        # scale_factor = self.decoder.r_init / self.decoder.r
        alignments_backward = torch.nn.functional.interpolate(
            alignments_backward.transpose(1, 2),
            size=alignments.shape[1],
            mode="nearest",
        ).transpose(1, 2)
        decoder_outputs_backward = decoder_outputs_backward.transpose(1, 2)
        decoder_outputs_backward = decoder_outputs_backward[:, :T, :]
        return decoder_outputs_backward, alignments_backward

    #############################
    # EMBEDDING FUNCTIONS
    #############################

    def compute_gst(self, inputs, style_input, speaker_embedding=None):
        """Compute global style token"""
        if isinstance(style_input, dict):
            # multiply each style token with a weight
            query = torch.zeros(1, 1, self.gst.gst_embedding_dim // 2).type_as(inputs)
            if speaker_embedding is not None:
                query = torch.cat([query, speaker_embedding.reshape(1, 1, -1)], dim=-1)

            _GST = torch.tanh(self.gst_layer.style_token_layer.style_tokens)
            gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs)
            for k_token, v_amplifier in style_input.items():
                key = _GST[int(k_token)].unsqueeze(0).expand(1, -1, -1)
                gst_outputs_att = self.gst_layer.style_token_layer.attention(query, key)
                gst_outputs = gst_outputs + gst_outputs_att * v_amplifier
        elif style_input is None:
            # ignore style token and return zero tensor
            gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs)
        else:
            # compute style tokens
            gst_outputs = self.gst_layer(style_input, speaker_embedding)  # pylint: disable=not-callable
        inputs = self._concat_speaker_embedding(inputs, gst_outputs)
        return inputs

    def compute_capacitron_VAE_embedding(self, inputs, reference_mel_info, text_info=None, speaker_embedding=None):
        """Capacitron Variational Autoencoder"""
        (
            VAE_outputs,
            posterior_distribution,
            prior_distribution,
            capacitron_beta,
        ) = self.capacitron_vae_layer(
            reference_mel_info,
            text_info,
            speaker_embedding,  # pylint: disable=not-callable
        )

        VAE_outputs = VAE_outputs.to(inputs.device)
        encoder_output = self._concat_speaker_embedding(
            inputs, VAE_outputs
        )  # concatenate to the output of the basic tacotron encoder
        return (
            encoder_output,
            posterior_distribution,
            prior_distribution,
            capacitron_beta,
        )

    @staticmethod
    def _add_speaker_embedding(outputs, embedded_speakers):
        embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1)
        outputs = outputs + embedded_speakers_
        return outputs

    @staticmethod
    def _concat_speaker_embedding(outputs, embedded_speakers):
        embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1)
        outputs = torch.cat([outputs, embedded_speakers_], dim=-1)
        return outputs

    #############################
    # CALLBACKS
    #############################

    def on_epoch_start(self, trainer):
        """Callback for setting values wrt gradual training schedule.

        Args:
            trainer (TrainerTTS): TTS trainer object that is used to train this model.
        """
        if self.gradual_training:
            r, trainer.config.batch_size = gradual_training_scheduler(trainer.total_steps_done, trainer.config)
            trainer.config.r = r
            self.decoder.set_r(r)
            if trainer.config.bidirectional_decoder:
                trainer.model.decoder_backward.set_r(r)
            print(f"\n > Number of output frames: {self.decoder.r}")