File size: 70,162 Bytes
813828b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
import os
from dataclasses import dataclass, field
from itertools import chain
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.distributed as dist
import torchaudio
from coqpit import Coqpit
from librosa.filters import mel as librosa_mel_fn
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
from trainer.torch import DistributedSampler, DistributedSamplerWrapper
from trainer.trainer_utils import get_optimizer, get_scheduler

from TTS.tts.datasets.dataset import F0Dataset, TTSDataset, _parse_sample
from TTS.tts.layers.delightful_tts.acoustic_model import AcousticModel
from TTS.tts.layers.losses import ForwardSumLoss, VitsDiscriminatorLoss
from TTS.tts.layers.vits.discriminator import VitsDiscriminator
from TTS.tts.models.base_tts import BaseTTSE2E
from TTS.tts.utils.helpers import average_over_durations, compute_attn_prior, rand_segments, segment, sequence_mask
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.tts.utils.visual import plot_alignment, plot_avg_pitch, plot_pitch, plot_spectrogram
from TTS.utils.audio.numpy_transforms import build_mel_basis, compute_f0
from TTS.utils.audio.numpy_transforms import db_to_amp as db_to_amp_numpy
from TTS.utils.audio.numpy_transforms import mel_to_wav as mel_to_wav_numpy
from TTS.utils.audio.processor import AudioProcessor
from TTS.utils.io import load_fsspec
from TTS.vocoder.layers.losses import MultiScaleSTFTLoss
from TTS.vocoder.models.hifigan_generator import HifiganGenerator
from TTS.vocoder.utils.generic_utils import plot_results


def id_to_torch(aux_id, cuda=False):
    if aux_id is not None:
        aux_id = np.asarray(aux_id)
        aux_id = torch.from_numpy(aux_id)
    if cuda:
        return aux_id.cuda()
    return aux_id


def embedding_to_torch(d_vector, cuda=False):
    if d_vector is not None:
        d_vector = np.asarray(d_vector)
        d_vector = torch.from_numpy(d_vector).float()
        d_vector = d_vector.squeeze().unsqueeze(0)
    if cuda:
        return d_vector.cuda()
    return d_vector


def numpy_to_torch(np_array, dtype, cuda=False):
    if np_array is None:
        return None
    tensor = torch.as_tensor(np_array, dtype=dtype)
    if cuda:
        return tensor.cuda()
    return tensor


def get_mask_from_lengths(lengths: torch.Tensor) -> torch.Tensor:
    batch_size = lengths.shape[0]
    max_len = torch.max(lengths).item()
    ids = torch.arange(0, max_len, device=lengths.device).unsqueeze(0).expand(batch_size, -1)
    mask = ids >= lengths.unsqueeze(1).expand(-1, max_len)
    return mask


def pad(input_ele: List[torch.Tensor], max_len: int) -> torch.Tensor:
    out_list = torch.jit.annotate(List[torch.Tensor], [])
    for batch in input_ele:
        if len(batch.shape) == 1:
            one_batch_padded = F.pad(batch, (0, max_len - batch.size(0)), "constant", 0.0)
        else:
            one_batch_padded = F.pad(batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0)
        out_list.append(one_batch_padded)
    out_padded = torch.stack(out_list)
    return out_padded


def init_weights(m: nn.Module, mean: float = 0.0, std: float = 0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)


def stride_lens(lens: torch.Tensor, stride: int = 2) -> torch.Tensor:
    return torch.ceil(lens / stride).int()


def initialize_embeddings(shape: Tuple[int]) -> torch.Tensor:
    assert len(shape) == 2, "Can only initialize 2-D embedding matrices ..."
    return torch.randn(shape) * np.sqrt(2 / shape[1])


# pylint: disable=redefined-outer-name
def calc_same_padding(kernel_size: int) -> Tuple[int, int]:
    pad = kernel_size // 2
    return (pad, pad - (kernel_size + 1) % 2)


hann_window = {}
mel_basis = {}


@torch.no_grad()
def weights_reset(m: nn.Module):
    # check if the current module has reset_parameters and if it is reset the weight
    reset_parameters = getattr(m, "reset_parameters", None)
    if callable(reset_parameters):
        m.reset_parameters()


def get_module_weights_sum(mdl: nn.Module):
    dict_sums = {}
    for name, w in mdl.named_parameters():
        if "weight" in name:
            value = w.data.sum().item()
            dict_sums[name] = value
    return dict_sums


def load_audio(file_path: str):
    """Load the audio file normalized in [-1, 1]

    Return Shapes:
        - x: :math:`[1, T]`
    """
    x, sr = torchaudio.load(
        file_path,
    )
    assert (x > 1).sum() + (x < -1).sum() == 0
    return x, sr


def _amp_to_db(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def _db_to_amp(x, C=1):
    return torch.exp(x) / C


def amp_to_db(magnitudes):
    output = _amp_to_db(magnitudes)
    return output


def db_to_amp(magnitudes):
    output = _db_to_amp(magnitudes)
    return output


def _wav_to_spec(y, n_fft, hop_length, win_length, center=False):
    y = y.squeeze(1)

    if torch.min(y) < -1.0:
        print("min value is ", torch.min(y))
    if torch.max(y) > 1.0:
        print("max value is ", torch.max(y))

    global hann_window  # pylint: disable=global-statement
    dtype_device = str(y.dtype) + "_" + str(y.device)
    wnsize_dtype_device = str(win_length) + "_" + dtype_device
    if wnsize_dtype_device not in hann_window:
        hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device)

    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=hann_window[wnsize_dtype_device],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=False,
    )

    return spec


def wav_to_spec(y, n_fft, hop_length, win_length, center=False):
    """
    Args Shapes:
        - y : :math:`[B, 1, T]`

    Return Shapes:
        - spec : :math:`[B,C,T]`
    """
    spec = _wav_to_spec(y, n_fft, hop_length, win_length, center=center)
    spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
    return spec


def wav_to_energy(y, n_fft, hop_length, win_length, center=False):
    spec = _wav_to_spec(y, n_fft, hop_length, win_length, center=center)

    spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
    return torch.norm(spec, dim=1, keepdim=True)


def name_mel_basis(spec, n_fft, fmax):
    n_fft_len = f"{n_fft}_{fmax}_{spec.dtype}_{spec.device}"
    return n_fft_len


def spec_to_mel(spec, n_fft, num_mels, sample_rate, fmin, fmax):
    """
    Args Shapes:
        - spec : :math:`[B,C,T]`

    Return Shapes:
        - mel : :math:`[B,C,T]`
    """
    global mel_basis  # pylint: disable=global-statement
    mel_basis_key = name_mel_basis(spec, n_fft, fmax)
    # pylint: disable=too-many-function-args
    if mel_basis_key not in mel_basis:
        # pylint: disable=missing-kwoa
        mel = librosa_mel_fn(sample_rate, n_fft, num_mels, fmin, fmax)
        mel_basis[mel_basis_key] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
    mel = torch.matmul(mel_basis[mel_basis_key], spec)
    mel = amp_to_db(mel)
    return mel


def wav_to_mel(y, n_fft, num_mels, sample_rate, hop_length, win_length, fmin, fmax, center=False):
    """
    Args Shapes:
        - y : :math:`[B, 1, T_y]`

    Return Shapes:
        - spec : :math:`[B,C,T_spec]`
    """
    y = y.squeeze(1)

    if torch.min(y) < -1.0:
        print("min value is ", torch.min(y))
    if torch.max(y) > 1.0:
        print("max value is ", torch.max(y))

    global mel_basis, hann_window  # pylint: disable=global-statement
    mel_basis_key = name_mel_basis(y, n_fft, fmax)
    wnsize_dtype_device = str(win_length) + "_" + str(y.dtype) + "_" + str(y.device)
    if mel_basis_key not in mel_basis:
        # pylint: disable=missing-kwoa
        mel = librosa_mel_fn(
            sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
        )  # pylint: disable=too-many-function-args
        mel_basis[mel_basis_key] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
    if wnsize_dtype_device not in hann_window:
        hann_window[wnsize_dtype_device] = torch.hann_window(win_length).to(dtype=y.dtype, device=y.device)

    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=hann_window[wnsize_dtype_device],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=False,
    )

    spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
    spec = torch.matmul(mel_basis[mel_basis_key], spec)
    spec = amp_to_db(spec)
    return spec


##############################
# DATASET
##############################


def get_attribute_balancer_weights(items: list, attr_name: str, multi_dict: dict = None):
    """Create balancer weight for torch WeightedSampler"""
    attr_names_samples = np.array([item[attr_name] for item in items])
    unique_attr_names = np.unique(attr_names_samples).tolist()
    attr_idx = [unique_attr_names.index(l) for l in attr_names_samples]
    attr_count = np.array([len(np.where(attr_names_samples == l)[0]) for l in unique_attr_names])
    weight_attr = 1.0 / attr_count
    dataset_samples_weight = np.array([weight_attr[l] for l in attr_idx])
    dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight)
    if multi_dict is not None:
        multiplier_samples = np.array([multi_dict.get(item[attr_name], 1.0) for item in items])
        dataset_samples_weight *= multiplier_samples
    return (
        torch.from_numpy(dataset_samples_weight).float(),
        unique_attr_names,
        np.unique(dataset_samples_weight).tolist(),
    )


class ForwardTTSE2eF0Dataset(F0Dataset):
    """Override F0Dataset to avoid slow computing of pitches"""

    def __init__(
        self,
        ap,
        samples: Union[List[List], List[Dict]],
        verbose=False,
        cache_path: str = None,
        precompute_num_workers=0,
        normalize_f0=True,
    ):
        super().__init__(
            samples=samples,
            ap=ap,
            verbose=verbose,
            cache_path=cache_path,
            precompute_num_workers=precompute_num_workers,
            normalize_f0=normalize_f0,
        )

    def _compute_and_save_pitch(self, wav_file, pitch_file=None):
        wav, _ = load_audio(wav_file)
        f0 = compute_f0(
            x=wav.numpy()[0],
            sample_rate=self.ap.sample_rate,
            hop_length=self.ap.hop_length,
            pitch_fmax=self.ap.pitch_fmax,
            pitch_fmin=self.ap.pitch_fmin,
            win_length=self.ap.win_length,
        )
        # skip the last F0 value to align with the spectrogram
        if wav.shape[1] % self.ap.hop_length != 0:
            f0 = f0[:-1]
        if pitch_file:
            np.save(pitch_file, f0)
        return f0

    def compute_or_load(self, wav_file, audio_name):
        """
        compute pitch and return a numpy array of pitch values
        """
        pitch_file = self.create_pitch_file_path(audio_name, self.cache_path)
        if not os.path.exists(pitch_file):
            pitch = self._compute_and_save_pitch(wav_file=wav_file, pitch_file=pitch_file)
        else:
            pitch = np.load(pitch_file)
        return pitch.astype(np.float32)


class ForwardTTSE2eDataset(TTSDataset):
    def __init__(self, *args, **kwargs):
        # don't init the default F0Dataset in TTSDataset
        compute_f0 = kwargs.pop("compute_f0", False)
        kwargs["compute_f0"] = False
        self.attn_prior_cache_path = kwargs.pop("attn_prior_cache_path")

        super().__init__(*args, **kwargs)

        self.compute_f0 = compute_f0
        self.pad_id = self.tokenizer.characters.pad_id
        self.ap = kwargs["ap"]

        if self.compute_f0:
            self.f0_dataset = ForwardTTSE2eF0Dataset(
                ap=self.ap,
                samples=self.samples,
                cache_path=kwargs["f0_cache_path"],
                precompute_num_workers=kwargs["precompute_num_workers"],
            )

        if self.attn_prior_cache_path is not None:
            os.makedirs(self.attn_prior_cache_path, exist_ok=True)

    def __getitem__(self, idx):
        item = self.samples[idx]

        rel_wav_path = Path(item["audio_file"]).relative_to(item["root_path"]).with_suffix("")
        rel_wav_path = str(rel_wav_path).replace("/", "_")

        raw_text = item["text"]
        wav, _ = load_audio(item["audio_file"])
        wav_filename = os.path.basename(item["audio_file"])

        try:
            token_ids = self.get_token_ids(idx, item["text"])
        except:
            print(idx, item)
            # pylint: disable=raise-missing-from
            raise OSError
        f0 = None
        if self.compute_f0:
            f0 = self.get_f0(idx)["f0"]

        # after phonemization the text length may change
        # this is a shameful 🤭 hack to prevent longer phonemes
        # TODO: find a better fix
        if len(token_ids) > self.max_text_len or wav.shape[1] < self.min_audio_len:
            self.rescue_item_idx += 1
            return self.__getitem__(self.rescue_item_idx)

        attn_prior = None
        if self.attn_prior_cache_path is not None:
            attn_prior = self.load_or_compute_attn_prior(token_ids, wav, rel_wav_path)

        return {
            "raw_text": raw_text,
            "token_ids": token_ids,
            "token_len": len(token_ids),
            "wav": wav,
            "pitch": f0,
            "wav_file": wav_filename,
            "speaker_name": item["speaker_name"],
            "language_name": item["language"],
            "attn_prior": attn_prior,
            "audio_unique_name": item["audio_unique_name"],
        }

    def load_or_compute_attn_prior(self, token_ids, wav, rel_wav_path):
        """Load or compute and save the attention prior."""
        attn_prior_file = os.path.join(self.attn_prior_cache_path, f"{rel_wav_path}.npy")
        # pylint: disable=no-else-return
        if os.path.exists(attn_prior_file):
            return np.load(attn_prior_file)
        else:
            token_len = len(token_ids)
            mel_len = wav.shape[1] // self.ap.hop_length
            attn_prior = compute_attn_prior(token_len, mel_len)
            np.save(attn_prior_file, attn_prior)
            return attn_prior

    @property
    def lengths(self):
        lens = []
        for item in self.samples:
            _, wav_file, *_ = _parse_sample(item)
            audio_len = os.path.getsize(wav_file) / 16 * 8  # assuming 16bit audio
            lens.append(audio_len)
        return lens

    def collate_fn(self, batch):
        """
        Return Shapes:
            - tokens: :math:`[B, T]`
            - token_lens :math:`[B]`
            - token_rel_lens :math:`[B]`
            - pitch :math:`[B, T]`
            - waveform: :math:`[B, 1, T]`
            - waveform_lens: :math:`[B]`
            - waveform_rel_lens: :math:`[B]`
            - speaker_names: :math:`[B]`
            - language_names: :math:`[B]`
            - audiofile_paths: :math:`[B]`
            - raw_texts: :math:`[B]`
            - attn_prior: :math:`[[T_token, T_mel]]`
        """
        B = len(batch)
        batch = {k: [dic[k] for dic in batch] for k in batch[0]}

        max_text_len = max([len(x) for x in batch["token_ids"]])
        token_lens = torch.LongTensor(batch["token_len"])
        token_rel_lens = token_lens / token_lens.max()

        wav_lens = [w.shape[1] for w in batch["wav"]]
        wav_lens = torch.LongTensor(wav_lens)
        wav_lens_max = torch.max(wav_lens)
        wav_rel_lens = wav_lens / wav_lens_max

        pitch_padded = None
        if self.compute_f0:
            pitch_lens = [p.shape[0] for p in batch["pitch"]]
            pitch_lens = torch.LongTensor(pitch_lens)
            pitch_lens_max = torch.max(pitch_lens)
            pitch_padded = torch.FloatTensor(B, 1, pitch_lens_max)
            pitch_padded = pitch_padded.zero_() + self.pad_id

        token_padded = torch.LongTensor(B, max_text_len)
        wav_padded = torch.FloatTensor(B, 1, wav_lens_max)

        token_padded = token_padded.zero_() + self.pad_id
        wav_padded = wav_padded.zero_() + self.pad_id

        for i in range(B):
            token_ids = batch["token_ids"][i]
            token_padded[i, : batch["token_len"][i]] = torch.LongTensor(token_ids)

            wav = batch["wav"][i]
            wav_padded[i, :, : wav.size(1)] = torch.FloatTensor(wav)

            if self.compute_f0:
                pitch = batch["pitch"][i]
                pitch_padded[i, 0, : len(pitch)] = torch.FloatTensor(pitch)

        return {
            "text_input": token_padded,
            "text_lengths": token_lens,
            "text_rel_lens": token_rel_lens,
            "pitch": pitch_padded,
            "waveform": wav_padded,  # (B x T)
            "waveform_lens": wav_lens,  # (B)
            "waveform_rel_lens": wav_rel_lens,
            "speaker_names": batch["speaker_name"],
            "language_names": batch["language_name"],
            "audio_unique_names": batch["audio_unique_name"],
            "audio_files": batch["wav_file"],
            "raw_text": batch["raw_text"],
            "attn_priors": batch["attn_prior"] if batch["attn_prior"][0] is not None else None,
        }


##############################
# CONFIG DEFINITIONS
##############################


@dataclass
class VocoderConfig(Coqpit):
    resblock_type_decoder: str = "1"
    resblock_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [3, 7, 11])
    resblock_dilation_sizes_decoder: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
    upsample_rates_decoder: List[int] = field(default_factory=lambda: [8, 8, 2, 2])
    upsample_initial_channel_decoder: int = 512
    upsample_kernel_sizes_decoder: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
    use_spectral_norm_discriminator: bool = False
    upsampling_rates_discriminator: List[int] = field(default_factory=lambda: [4, 4, 4, 4])
    periods_discriminator: List[int] = field(default_factory=lambda: [2, 3, 5, 7, 11])
    pretrained_model_path: Optional[str] = None


@dataclass
class DelightfulTtsAudioConfig(Coqpit):
    sample_rate: int = 22050
    hop_length: int = 256
    win_length: int = 1024
    fft_size: int = 1024
    mel_fmin: float = 0.0
    mel_fmax: float = 8000
    num_mels: int = 100
    pitch_fmax: float = 640.0
    pitch_fmin: float = 1.0
    resample: bool = False
    preemphasis: float = 0.0
    ref_level_db: int = 20
    do_sound_norm: bool = False
    log_func: str = "np.log10"
    do_trim_silence: bool = True
    trim_db: int = 45
    do_rms_norm: bool = False
    db_level: float = None
    power: float = 1.5
    griffin_lim_iters: int = 60
    spec_gain: int = 20
    do_amp_to_db_linear: bool = True
    do_amp_to_db_mel: bool = True
    min_level_db: int = -100
    max_norm: float = 4.0


@dataclass
class DelightfulTtsArgs(Coqpit):
    num_chars: int = 100
    spec_segment_size: int = 32
    n_hidden_conformer_encoder: int = 512
    n_layers_conformer_encoder: int = 6
    n_heads_conformer_encoder: int = 8
    dropout_conformer_encoder: float = 0.1
    kernel_size_conv_mod_conformer_encoder: int = 7
    kernel_size_depthwise_conformer_encoder: int = 7
    lrelu_slope: float = 0.3
    n_hidden_conformer_decoder: int = 512
    n_layers_conformer_decoder: int = 6
    n_heads_conformer_decoder: int = 8
    dropout_conformer_decoder: float = 0.1
    kernel_size_conv_mod_conformer_decoder: int = 11
    kernel_size_depthwise_conformer_decoder: int = 11
    bottleneck_size_p_reference_encoder: int = 4
    bottleneck_size_u_reference_encoder: int = 512
    ref_enc_filters_reference_encoder = [32, 32, 64, 64, 128, 128]
    ref_enc_size_reference_encoder: int = 3
    ref_enc_strides_reference_encoder = [1, 2, 1, 2, 1]
    ref_enc_pad_reference_encoder = [1, 1]
    ref_enc_gru_size_reference_encoder: int = 32
    ref_attention_dropout_reference_encoder: float = 0.2
    token_num_reference_encoder: int = 32
    predictor_kernel_size_reference_encoder: int = 5
    n_hidden_variance_adaptor: int = 512
    kernel_size_variance_adaptor: int = 5
    dropout_variance_adaptor: float = 0.5
    n_bins_variance_adaptor: int = 256
    emb_kernel_size_variance_adaptor: int = 3
    use_speaker_embedding: bool = False
    num_speakers: int = 0
    speakers_file: str = None
    d_vector_file: str = None
    speaker_embedding_channels: int = 384
    use_d_vector_file: bool = False
    d_vector_dim: int = 0
    freeze_vocoder: bool = False
    freeze_text_encoder: bool = False
    freeze_duration_predictor: bool = False
    freeze_pitch_predictor: bool = False
    freeze_energy_predictor: bool = False
    freeze_basis_vectors_predictor: bool = False
    freeze_decoder: bool = False
    length_scale: float = 1.0


##############################
# MODEL DEFINITION
##############################
class DelightfulTTS(BaseTTSE2E):
    """
    Paper::
        https://arxiv.org/pdf/2110.12612.pdf

    Paper Abstract::
        This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021.
        The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives:
        The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems
        with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves
        the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and
        propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training
        efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and
        implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and
        inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3)
        For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference.
        Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test
        and 4.35 in SMOS test, which indicates the effectiveness of our proposed system


    Model training::
        text --> ForwardTTS() --> spec_hat --> rand_seg_select()--> GANVocoder() --> waveform_seg
        spec --------^

    Examples:
        >>> from TTS.tts.models.forward_tts_e2e import ForwardTTSE2e, ForwardTTSE2eConfig
        >>> config = ForwardTTSE2eConfig()
        >>> model = ForwardTTSE2e(config)
    """

    # pylint: disable=dangerous-default-value
    def __init__(
        self,
        config: Coqpit,
        ap,
        tokenizer: "TTSTokenizer" = None,
        speaker_manager: SpeakerManager = None,
    ):
        super().__init__(config=config, ap=ap, tokenizer=tokenizer, speaker_manager=speaker_manager)
        self.ap = ap

        self._set_model_args(config)
        self.init_multispeaker(config)
        self.binary_loss_weight = None

        self.args.out_channels = self.config.audio.num_mels
        self.args.num_mels = self.config.audio.num_mels
        self.acoustic_model = AcousticModel(args=self.args, tokenizer=tokenizer, speaker_manager=speaker_manager)

        self.waveform_decoder = HifiganGenerator(
            self.config.audio.num_mels,
            1,
            self.config.vocoder.resblock_type_decoder,
            self.config.vocoder.resblock_dilation_sizes_decoder,
            self.config.vocoder.resblock_kernel_sizes_decoder,
            self.config.vocoder.upsample_kernel_sizes_decoder,
            self.config.vocoder.upsample_initial_channel_decoder,
            self.config.vocoder.upsample_rates_decoder,
            inference_padding=0,
            # cond_channels=self.embedded_speaker_dim,
            conv_pre_weight_norm=False,
            conv_post_weight_norm=False,
            conv_post_bias=False,
        )

        if self.config.init_discriminator:
            self.disc = VitsDiscriminator(
                use_spectral_norm=self.config.vocoder.use_spectral_norm_discriminator,
                periods=self.config.vocoder.periods_discriminator,
            )

    @property
    def device(self):
        return next(self.parameters()).device

    @property
    def energy_scaler(self):
        return self.acoustic_model.energy_scaler

    @property
    def length_scale(self):
        return self.acoustic_model.length_scale

    @length_scale.setter
    def length_scale(self, value):
        self.acoustic_model.length_scale = value

    @property
    def pitch_mean(self):
        return self.acoustic_model.pitch_mean

    @pitch_mean.setter
    def pitch_mean(self, value):
        self.acoustic_model.pitch_mean = value

    @property
    def pitch_std(self):
        return self.acoustic_model.pitch_std

    @pitch_std.setter
    def pitch_std(self, value):
        self.acoustic_model.pitch_std = value

    @property
    def mel_basis(self):
        return build_mel_basis(
            sample_rate=self.ap.sample_rate,
            fft_size=self.ap.fft_size,
            num_mels=self.ap.num_mels,
            mel_fmax=self.ap.mel_fmax,
            mel_fmin=self.ap.mel_fmin,
        )  # pylint: disable=function-redefined

    def init_for_training(self) -> None:
        self.train_disc = (  # pylint: disable=attribute-defined-outside-init
            self.config.steps_to_start_discriminator <= 0
        )  # pylint: disable=attribute-defined-outside-init
        self.update_energy_scaler = True  # pylint: disable=attribute-defined-outside-init

    def init_multispeaker(self, config: Coqpit):
        """Init for multi-speaker training.

        Args:
            config (Coqpit): Model configuration.
        """
        self.embedded_speaker_dim = 0
        self.num_speakers = self.args.num_speakers
        self.audio_transform = None

        if self.speaker_manager:
            self.num_speakers = self.speaker_manager.num_speakers
            self.args.num_speakers = self.speaker_manager.num_speakers

        if self.args.use_speaker_embedding:
            self._init_speaker_embedding()

        if self.args.use_d_vector_file:
            self._init_d_vector()

    def _init_speaker_embedding(self):
        # pylint: disable=attribute-defined-outside-init
        if self.num_speakers > 0:
            print(" > initialization of speaker-embedding layers.")
            self.embedded_speaker_dim = self.args.speaker_embedding_channels
            self.args.embedded_speaker_dim = self.args.speaker_embedding_channels

    def _init_d_vector(self):
        # pylint: disable=attribute-defined-outside-init
        if hasattr(self, "emb_g"):
            raise ValueError("[!] Speaker embedding layer already initialized before d_vector settings.")
        self.embedded_speaker_dim = self.args.d_vector_dim
        self.args.embedded_speaker_dim = self.args.d_vector_dim

    def _freeze_layers(self):
        if self.args.freeze_vocoder:
            for param in self.vocoder.paramseters():
                param.requires_grad = False

        if self.args.freeze_text_encoder:
            for param in self.text_encoder.parameters():
                param.requires_grad = False

        if self.args.freeze_duration_predictor:
            for param in self.durarion_predictor.parameters():
                param.requires_grad = False

        if self.args.freeze_pitch_predictor:
            for param in self.pitch_predictor.parameters():
                param.requires_grad = False

        if self.args.freeze_energy_predictor:
            for param in self.energy_predictor.parameters():
                param.requires_grad = False

        if self.args.freeze_decoder:
            for param in self.decoder.parameters():
                param.requires_grad = False

    def forward(
        self,
        x: torch.LongTensor,
        x_lengths: torch.LongTensor,
        spec_lengths: torch.LongTensor,
        spec: torch.FloatTensor,
        waveform: torch.FloatTensor,
        pitch: torch.FloatTensor = None,
        energy: torch.FloatTensor = None,
        attn_priors: torch.FloatTensor = None,
        d_vectors: torch.FloatTensor = None,
        speaker_idx: torch.LongTensor = None,
    ) -> Dict:
        """Model's forward pass.

        Args:
            x (torch.LongTensor): Input character sequences.
            x_lengths (torch.LongTensor): Input sequence lengths.
            spec_lengths (torch.LongTensor): Spectrogram sequnce lengths. Defaults to None.
            spec (torch.FloatTensor): Spectrogram frames. Only used when the alignment network is on. Defaults to None.
            waveform (torch.FloatTensor): Waveform. Defaults to None.
            pitch (torch.FloatTensor): Pitch values for each spectrogram frame. Only used when the pitch predictor is on. Defaults to None.
            energy (torch.FloatTensor): Spectral energy values for each spectrogram frame. Only used when the energy predictor is on. Defaults to None.
            attn_priors (torch.FloatTentrasor): Attention priors for the aligner network. Defaults to None.
            aux_input (Dict): Auxiliary model inputs for multi-speaker training. Defaults to `{"d_vectors": 0, "speaker_ids": None}`.

        Shapes:
            - x: :math:`[B, T_max]`
            - x_lengths: :math:`[B]`
            - spec_lengths: :math:`[B]`
            - spec: :math:`[B, T_max2, C_spec]`
            - waveform: :math:`[B, 1, T_max2 * hop_length]`
            - g: :math:`[B, C]`
            - pitch: :math:`[B, 1, T_max2]`
            - energy: :math:`[B, 1, T_max2]`
        """
        encoder_outputs = self.acoustic_model(
            tokens=x,
            src_lens=x_lengths,
            mel_lens=spec_lengths,
            mels=spec,
            pitches=pitch,
            energies=energy,
            attn_priors=attn_priors,
            d_vectors=d_vectors,
            speaker_idx=speaker_idx,
        )

        # use mel-spec from the decoder
        vocoder_input = encoder_outputs["model_outputs"]  # [B, T_max2, C_mel]

        vocoder_input_slices, slice_ids = rand_segments(
            x=vocoder_input.transpose(1, 2),
            x_lengths=spec_lengths,
            segment_size=self.args.spec_segment_size,
            let_short_samples=True,
            pad_short=True,
        )
        if encoder_outputs["spk_emb"] is not None:
            g = encoder_outputs["spk_emb"].unsqueeze(-1)
        else:
            g = None

        vocoder_output = self.waveform_decoder(x=vocoder_input_slices.detach(), g=g)
        wav_seg = segment(
            waveform,
            slice_ids * self.ap.hop_length,
            self.args.spec_segment_size * self.ap.hop_length,
            pad_short=True,
        )
        model_outputs = {**encoder_outputs}
        model_outputs["acoustic_model_outputs"] = encoder_outputs["model_outputs"]
        model_outputs["model_outputs"] = vocoder_output
        model_outputs["waveform_seg"] = wav_seg
        model_outputs["slice_ids"] = slice_ids
        return model_outputs

    @torch.no_grad()
    def inference(
        self, x, aux_input={"d_vectors": None, "speaker_ids": None}, pitch_transform=None, energy_transform=None
    ):
        encoder_outputs = self.acoustic_model.inference(
            tokens=x,
            d_vectors=aux_input["d_vectors"],
            speaker_idx=aux_input["speaker_ids"],
            pitch_transform=pitch_transform,
            energy_transform=energy_transform,
            p_control=None,
            d_control=None,
        )
        vocoder_input = encoder_outputs["model_outputs"].transpose(1, 2)  # [B, T_max2, C_mel] -> [B, C_mel, T_max2]
        if encoder_outputs["spk_emb"] is not None:
            g = encoder_outputs["spk_emb"].unsqueeze(-1)
        else:
            g = None

        vocoder_output = self.waveform_decoder(x=vocoder_input, g=g)
        model_outputs = {**encoder_outputs}
        model_outputs["model_outputs"] = vocoder_output
        return model_outputs

    @torch.no_grad()
    def inference_spec_decoder(self, x, aux_input={"d_vectors": None, "speaker_ids": None}):
        encoder_outputs = self.acoustic_model.inference(
            tokens=x,
            d_vectors=aux_input["d_vectors"],
            speaker_idx=aux_input["speaker_ids"],
        )
        model_outputs = {**encoder_outputs}
        return model_outputs

    def train_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int):
        if optimizer_idx == 0:
            tokens = batch["text_input"]
            token_lenghts = batch["text_lengths"]
            mel = batch["mel_input"]
            mel_lens = batch["mel_lengths"]
            waveform = batch["waveform"]  # [B, T, C] -> [B, C, T]
            pitch = batch["pitch"]
            d_vectors = batch["d_vectors"]
            speaker_ids = batch["speaker_ids"]
            attn_priors = batch["attn_priors"]
            energy = batch["energy"]

            # generator pass
            outputs = self.forward(
                x=tokens,
                x_lengths=token_lenghts,
                spec_lengths=mel_lens,
                spec=mel,
                waveform=waveform,
                pitch=pitch,
                energy=energy,
                attn_priors=attn_priors,
                d_vectors=d_vectors,
                speaker_idx=speaker_ids,
            )

            # cache tensors for the generator pass
            self.model_outputs_cache = outputs  # pylint: disable=attribute-defined-outside-init

            if self.train_disc:
                # compute scores and features
                scores_d_fake, _, scores_d_real, _ = self.disc(
                    outputs["model_outputs"].detach(), outputs["waveform_seg"]
                )

                # compute loss
                with autocast(enabled=False):  # use float32 for the criterion
                    loss_dict = criterion[optimizer_idx](
                        scores_disc_fake=scores_d_fake,
                        scores_disc_real=scores_d_real,
                    )
                return outputs, loss_dict
            return None, None

        if optimizer_idx == 1:
            mel = batch["mel_input"]
            # compute melspec segment
            with autocast(enabled=False):
                mel_slice = segment(
                    mel.float(), self.model_outputs_cache["slice_ids"], self.args.spec_segment_size, pad_short=True
                )

                mel_slice_hat = wav_to_mel(
                    y=self.model_outputs_cache["model_outputs"].float(),
                    n_fft=self.ap.fft_size,
                    sample_rate=self.ap.sample_rate,
                    num_mels=self.ap.num_mels,
                    hop_length=self.ap.hop_length,
                    win_length=self.ap.win_length,
                    fmin=self.ap.mel_fmin,
                    fmax=self.ap.mel_fmax,
                    center=False,
                )

                scores_d_fake = None
                feats_d_fake = None
                feats_d_real = None

            if self.train_disc:
                # compute discriminator scores and features
                scores_d_fake, feats_d_fake, _, feats_d_real = self.disc(
                    self.model_outputs_cache["model_outputs"], self.model_outputs_cache["waveform_seg"]
                )

            # compute losses
            with autocast(enabled=True):  # use float32 for the criterion
                loss_dict = criterion[optimizer_idx](
                    mel_output=self.model_outputs_cache["acoustic_model_outputs"].transpose(1, 2),
                    mel_target=batch["mel_input"],
                    mel_lens=batch["mel_lengths"],
                    dur_output=self.model_outputs_cache["dr_log_pred"],
                    dur_target=self.model_outputs_cache["dr_log_target"].detach(),
                    pitch_output=self.model_outputs_cache["pitch_pred"],
                    pitch_target=self.model_outputs_cache["pitch_target"],
                    energy_output=self.model_outputs_cache["energy_pred"],
                    energy_target=self.model_outputs_cache["energy_target"],
                    src_lens=batch["text_lengths"],
                    waveform=self.model_outputs_cache["waveform_seg"],
                    waveform_hat=self.model_outputs_cache["model_outputs"],
                    p_prosody_ref=self.model_outputs_cache["p_prosody_ref"],
                    p_prosody_pred=self.model_outputs_cache["p_prosody_pred"],
                    u_prosody_ref=self.model_outputs_cache["u_prosody_ref"],
                    u_prosody_pred=self.model_outputs_cache["u_prosody_pred"],
                    aligner_logprob=self.model_outputs_cache["aligner_logprob"],
                    aligner_hard=self.model_outputs_cache["aligner_mas"],
                    aligner_soft=self.model_outputs_cache["aligner_soft"],
                    binary_loss_weight=self.binary_loss_weight,
                    feats_fake=feats_d_fake,
                    feats_real=feats_d_real,
                    scores_fake=scores_d_fake,
                    spec_slice=mel_slice,
                    spec_slice_hat=mel_slice_hat,
                    skip_disc=not self.train_disc,
                )

                loss_dict["avg_text_length"] = batch["text_lengths"].float().mean()
                loss_dict["avg_mel_length"] = batch["mel_lengths"].float().mean()
                loss_dict["avg_text_batch_occupancy"] = (
                    batch["text_lengths"].float() / batch["text_lengths"].float().max()
                ).mean()
                loss_dict["avg_mel_batch_occupancy"] = (
                    batch["mel_lengths"].float() / batch["mel_lengths"].float().max()
                ).mean()

            return self.model_outputs_cache, loss_dict
        raise ValueError(" [!] Unexpected `optimizer_idx`.")

    def eval_step(self, batch: dict, criterion: nn.Module, optimizer_idx: int):
        return self.train_step(batch, criterion, optimizer_idx)

    def _log(self, batch, outputs, name_prefix="train"):
        figures, audios = {}, {}

        # encoder outputs
        model_outputs = outputs[1]["acoustic_model_outputs"]
        alignments = outputs[1]["alignments"]
        mel_input = batch["mel_input"]

        pred_spec = model_outputs[0].data.cpu().numpy()
        gt_spec = mel_input[0].data.cpu().numpy()
        align_img = alignments[0].data.cpu().numpy()

        figures = {
            "prediction": plot_spectrogram(pred_spec, None, output_fig=False),
            "ground_truth": plot_spectrogram(gt_spec.T, None, output_fig=False),
            "alignment": plot_alignment(align_img, output_fig=False),
        }

        # plot pitch figures
        pitch_avg = abs(outputs[1]["pitch_target"][0, 0].data.cpu().numpy())
        pitch_avg_hat = abs(outputs[1]["pitch_pred"][0, 0].data.cpu().numpy())
        chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy())
        pitch_figures = {
            "pitch_ground_truth": plot_avg_pitch(pitch_avg, chars, output_fig=False),
            "pitch_avg_predicted": plot_avg_pitch(pitch_avg_hat, chars, output_fig=False),
        }
        figures.update(pitch_figures)

        # plot energy figures
        energy_avg = abs(outputs[1]["energy_target"][0, 0].data.cpu().numpy())
        energy_avg_hat = abs(outputs[1]["energy_pred"][0, 0].data.cpu().numpy())
        chars = self.tokenizer.decode(batch["text_input"][0].data.cpu().numpy())
        energy_figures = {
            "energy_ground_truth": plot_avg_pitch(energy_avg, chars, output_fig=False),
            "energy_avg_predicted": plot_avg_pitch(energy_avg_hat, chars, output_fig=False),
        }
        figures.update(energy_figures)

        # plot the attention mask computed from the predicted durations
        alignments_hat = outputs[1]["alignments_dp"][0].data.cpu().numpy()
        figures["alignment_hat"] = plot_alignment(alignments_hat.T, output_fig=False)

        # Sample audio
        encoder_audio = mel_to_wav_numpy(
            mel=db_to_amp_numpy(x=pred_spec.T, gain=1, base=None), mel_basis=self.mel_basis, **self.config.audio
        )
        audios[f"{name_prefix}/encoder_audio"] = encoder_audio

        # vocoder outputs
        y_hat = outputs[1]["model_outputs"]
        y = outputs[1]["waveform_seg"]

        vocoder_figures = plot_results(y_hat=y_hat, y=y, ap=self.ap, name_prefix=name_prefix)
        figures.update(vocoder_figures)

        sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
        audios[f"{name_prefix}/vocoder_audio"] = sample_voice
        return figures, audios

    def train_log(
        self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
    ):  # pylint: disable=no-self-use, unused-argument
        """Create visualizations and waveform examples.

        For example, here you can plot spectrograms and generate sample sample waveforms from these spectrograms to
        be projected onto Tensorboard.

        Args:
            batch (Dict): Model inputs used at the previous training step.
            outputs (Dict): Model outputs generated at the previous training step.

        Returns:
            Tuple[Dict, np.ndarray]: training plots and output waveform.
        """
        figures, audios = self._log(batch=batch, outputs=outputs, name_prefix="vocoder/")
        logger.train_figures(steps, figures)
        logger.train_audios(steps, audios, self.ap.sample_rate)

    def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
        figures, audios = self._log(batch=batch, outputs=outputs, name_prefix="vocoder/")
        logger.eval_figures(steps, figures)
        logger.eval_audios(steps, audios, self.ap.sample_rate)

    def get_aux_input_from_test_sentences(self, sentence_info):
        if hasattr(self.config, "model_args"):
            config = self.config.model_args
        else:
            config = self.config

        # extract speaker and language info
        text, speaker_name, style_wav = None, None, None

        if isinstance(sentence_info, list):
            if len(sentence_info) == 1:
                text = sentence_info[0]
            elif len(sentence_info) == 2:
                text, speaker_name = sentence_info
            elif len(sentence_info) == 3:
                text, speaker_name, style_wav = sentence_info
        else:
            text = sentence_info

        # get speaker  id/d_vector
        speaker_id, d_vector = None, None
        if hasattr(self, "speaker_manager"):
            if config.use_d_vector_file:
                if speaker_name is None:
                    d_vector = self.speaker_manager.get_random_embedding()
                else:
                    d_vector = self.speaker_manager.get_mean_embedding(speaker_name, num_samples=None, randomize=False)
            elif config.use_speaker_embedding:
                if speaker_name is None:
                    speaker_id = self.speaker_manager.get_random_id()
                else:
                    speaker_id = self.speaker_manager.name_to_id[speaker_name]

        return {"text": text, "speaker_id": speaker_id, "style_wav": style_wav, "d_vector": d_vector}

    def plot_outputs(self, text, wav, alignment, outputs):
        figures = {}
        pitch_avg_pred = outputs["pitch"].cpu()
        energy_avg_pred = outputs["energy"].cpu()
        spec = wav_to_mel(
            y=torch.from_numpy(wav[None, :]),
            n_fft=self.ap.fft_size,
            sample_rate=self.ap.sample_rate,
            num_mels=self.ap.num_mels,
            hop_length=self.ap.hop_length,
            win_length=self.ap.win_length,
            fmin=self.ap.mel_fmin,
            fmax=self.ap.mel_fmax,
            center=False,
        )[0].transpose(0, 1)
        pitch = compute_f0(
            x=wav[0],
            sample_rate=self.ap.sample_rate,
            hop_length=self.ap.hop_length,
            pitch_fmax=self.ap.pitch_fmax,
        )
        input_text = self.tokenizer.ids_to_text(self.tokenizer.text_to_ids(text, language="en"))
        input_text = input_text.replace("<BLNK>", "_")
        durations = outputs["durations"]
        pitch_avg = average_over_durations(torch.from_numpy(pitch)[None, None, :], durations.cpu())  # [1, 1, n_frames]
        pitch_avg_pred_denorm = (pitch_avg_pred * self.pitch_std) + self.pitch_mean
        figures["alignment"] = plot_alignment(alignment.transpose(1, 2), output_fig=False)
        figures["spectrogram"] = plot_spectrogram(spec)
        figures["pitch_from_wav"] = plot_pitch(pitch, spec)
        figures["pitch_avg_from_wav"] = plot_avg_pitch(pitch_avg.squeeze(), input_text)
        figures["pitch_avg_pred"] = plot_avg_pitch(pitch_avg_pred_denorm.squeeze(), input_text)
        figures["energy_avg_pred"] = plot_avg_pitch(energy_avg_pred.squeeze(), input_text)
        return figures

    def synthesize(
        self,
        text: str,
        speaker_id: str = None,
        d_vector: torch.tensor = None,
        pitch_transform=None,
        **kwargs,
    ):  # pylint: disable=unused-argument
        # TODO: add cloning support with ref_waveform
        is_cuda = next(self.parameters()).is_cuda

        # convert text to sequence of token IDs
        text_inputs = np.asarray(
            self.tokenizer.text_to_ids(text, language=None),
            dtype=np.int32,
        )

        # set speaker inputs
        _speaker_id = None
        if speaker_id is not None and self.args.use_speaker_embedding:
            if isinstance(speaker_id, str) and self.args.use_speaker_embedding:
                # get the speaker id for the speaker embedding layer
                _speaker_id = self.speaker_manager.name_to_id[speaker_id]
                _speaker_id = id_to_torch(_speaker_id, cuda=is_cuda)

        if speaker_id is not None and self.args.use_d_vector_file:
            # get the average d_vector for the speaker
            d_vector = self.speaker_manager.get_mean_embedding(speaker_id, num_samples=None, randomize=False)
        d_vector = embedding_to_torch(d_vector, cuda=is_cuda)

        text_inputs = numpy_to_torch(text_inputs, torch.long, cuda=is_cuda)
        text_inputs = text_inputs.unsqueeze(0)

        # synthesize voice
        outputs = self.inference(
            text_inputs,
            aux_input={"d_vectors": d_vector, "speaker_ids": _speaker_id},
            pitch_transform=pitch_transform,
            # energy_transform=energy_transform
        )

        # collect outputs
        wav = outputs["model_outputs"][0].data.cpu().numpy()
        alignments = outputs["alignments"]
        return_dict = {
            "wav": wav,
            "alignments": alignments,
            "text_inputs": text_inputs,
            "outputs": outputs,
        }
        return return_dict

    def synthesize_with_gl(self, text: str, speaker_id, d_vector):
        is_cuda = next(self.parameters()).is_cuda

        # convert text to sequence of token IDs
        text_inputs = np.asarray(
            self.tokenizer.text_to_ids(text, language=None),
            dtype=np.int32,
        )
        # pass tensors to backend
        if speaker_id is not None:
            speaker_id = id_to_torch(speaker_id, cuda=is_cuda)

        if d_vector is not None:
            d_vector = embedding_to_torch(d_vector, cuda=is_cuda)

        text_inputs = numpy_to_torch(text_inputs, torch.long, cuda=is_cuda)
        text_inputs = text_inputs.unsqueeze(0)

        # synthesize voice
        outputs = self.inference_spec_decoder(
            x=text_inputs,
            aux_input={"d_vectors": d_vector, "speaker_ids": speaker_id},
        )

        # collect outputs
        S = outputs["model_outputs"].cpu().numpy()[0].T
        S = db_to_amp_numpy(x=S, gain=1, base=None)
        wav = mel_to_wav_numpy(mel=S, mel_basis=self.mel_basis, **self.config.audio)
        alignments = outputs["alignments"]
        return_dict = {
            "wav": wav[None, :],
            "alignments": alignments,
            "text_inputs": text_inputs,
            "outputs": outputs,
        }
        return return_dict

    @torch.no_grad()
    def test_run(self, assets) -> Tuple[Dict, Dict]:
        """Generic test run for `tts` models used by `Trainer`.

        You can override this for a different behaviour.

        Returns:
            Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.
        """
        print(" | > Synthesizing test sentences.")
        test_audios = {}
        test_figures = {}
        test_sentences = self.config.test_sentences
        for idx, s_info in enumerate(test_sentences):
            aux_inputs = self.get_aux_input_from_test_sentences(s_info)
            outputs = self.synthesize(
                aux_inputs["text"],
                config=self.config,
                speaker_id=aux_inputs["speaker_id"],
                d_vector=aux_inputs["d_vector"],
            )
            outputs_gl = self.synthesize_with_gl(
                aux_inputs["text"],
                speaker_id=aux_inputs["speaker_id"],
                d_vector=aux_inputs["d_vector"],
            )
            # speaker_name = self.speaker_manager.speaker_names[aux_inputs["speaker_id"]]
            test_audios["{}-audio".format(idx)] = outputs["wav"].T
            test_audios["{}-audio_encoder".format(idx)] = outputs_gl["wav"].T
            test_figures["{}-alignment".format(idx)] = plot_alignment(outputs["alignments"], output_fig=False)
        return {"figures": test_figures, "audios": test_audios}

    def test_log(
        self, outputs: dict, logger: "Logger", assets: dict, steps: int  # pylint: disable=unused-argument
    ) -> None:
        logger.test_audios(steps, outputs["audios"], self.config.audio.sample_rate)
        logger.test_figures(steps, outputs["figures"])

    def format_batch(self, batch: Dict) -> Dict:
        """Compute speaker, langugage IDs and d_vector for the batch if necessary."""
        speaker_ids = None
        d_vectors = None

        # get numerical speaker ids from speaker names
        if self.speaker_manager is not None and self.speaker_manager.speaker_names and self.args.use_speaker_embedding:
            speaker_ids = [self.speaker_manager.name_to_id[sn] for sn in batch["speaker_names"]]

        if speaker_ids is not None:
            speaker_ids = torch.LongTensor(speaker_ids)
            batch["speaker_ids"] = speaker_ids

        # get d_vectors from audio file names
        if self.speaker_manager is not None and self.speaker_manager.embeddings and self.args.use_d_vector_file:
            d_vector_mapping = self.speaker_manager.embeddings
            d_vectors = [d_vector_mapping[w]["embedding"] for w in batch["audio_unique_names"]]
            d_vectors = torch.FloatTensor(d_vectors)

        batch["d_vectors"] = d_vectors
        batch["speaker_ids"] = speaker_ids
        return batch

    def format_batch_on_device(self, batch):
        """Compute spectrograms on the device."""

        ac = self.ap

        # compute spectrograms
        batch["mel_input"] = wav_to_mel(
            batch["waveform"],
            hop_length=ac.hop_length,
            win_length=ac.win_length,
            n_fft=ac.fft_size,
            num_mels=ac.num_mels,
            sample_rate=ac.sample_rate,
            fmin=ac.mel_fmin,
            fmax=ac.mel_fmax,
            center=False,
        )

        # TODO: Align pitch properly
        # assert (
        #     batch["pitch"].shape[2] == batch["mel_input"].shape[2]
        # ), f"{batch['pitch'].shape[2]}, {batch['mel_input'].shape[2]}"
        batch["pitch"] = batch["pitch"][:, :, : batch["mel_input"].shape[2]] if batch["pitch"] is not None else None
        batch["mel_lengths"] = (batch["mel_input"].shape[2] * batch["waveform_rel_lens"]).int()

        # zero the padding frames
        batch["mel_input"] = batch["mel_input"] * sequence_mask(batch["mel_lengths"]).unsqueeze(1)

        # format attn priors as we now the max mel length
        # TODO: fix 1 diff b/w mel_lengths and attn_priors

        if self.config.use_attn_priors:
            attn_priors_np = batch["attn_priors"]

            batch["attn_priors"] = torch.zeros(
                batch["mel_input"].shape[0],
                batch["mel_lengths"].max(),
                batch["text_lengths"].max(),
                device=batch["mel_input"].device,
            )

            for i in range(batch["mel_input"].shape[0]):
                batch["attn_priors"][i, : attn_priors_np[i].shape[0], : attn_priors_np[i].shape[1]] = torch.from_numpy(
                    attn_priors_np[i]
                )

        batch["energy"] = None
        batch["energy"] = wav_to_energy(  # [B, 1, T_max2]
            batch["waveform"],
            hop_length=ac.hop_length,
            win_length=ac.win_length,
            n_fft=ac.fft_size,
            center=False,
        )
        batch["energy"] = self.energy_scaler(batch["energy"])
        return batch

    def get_sampler(self, config: Coqpit, dataset: TTSDataset, num_gpus=1):
        weights = None
        data_items = dataset.samples
        if getattr(config, "use_weighted_sampler", False):
            for attr_name, alpha in config.weighted_sampler_attrs.items():
                print(f" > Using weighted sampler for attribute '{attr_name}' with alpha '{alpha}'")
                multi_dict = config.weighted_sampler_multipliers.get(attr_name, None)
                print(multi_dict)
                weights, attr_names, attr_weights = get_attribute_balancer_weights(
                    attr_name=attr_name, items=data_items, multi_dict=multi_dict
                )
                weights = weights * alpha
                print(f" > Attribute weights for '{attr_names}' \n | > {attr_weights}")

        if weights is not None:
            sampler = WeightedRandomSampler(weights, len(weights))
        else:
            sampler = None
        # sampler for DDP
        if sampler is None:
            sampler = DistributedSampler(dataset) if num_gpus > 1 else None
        else:  # If a sampler is already defined use this sampler and DDP sampler together
            sampler = DistributedSamplerWrapper(sampler) if num_gpus > 1 else sampler
        return sampler

    def get_data_loader(
        self,
        config: Coqpit,
        assets: Dict,
        is_eval: bool,
        samples: Union[List[Dict], List[List]],
        verbose: bool,
        num_gpus: int,
        rank: int = None,
    ) -> "DataLoader":
        if is_eval and not config.run_eval:
            loader = None
        else:
            # init dataloader
            dataset = ForwardTTSE2eDataset(
                samples=samples,
                ap=self.ap,
                batch_group_size=0 if is_eval else config.batch_group_size * config.batch_size,
                min_text_len=config.min_text_len,
                max_text_len=config.max_text_len,
                min_audio_len=config.min_audio_len,
                max_audio_len=config.max_audio_len,
                phoneme_cache_path=config.phoneme_cache_path,
                precompute_num_workers=config.precompute_num_workers,
                compute_f0=config.compute_f0,
                f0_cache_path=config.f0_cache_path,
                attn_prior_cache_path=config.attn_prior_cache_path if config.use_attn_priors else None,
                verbose=verbose,
                tokenizer=self.tokenizer,
                start_by_longest=config.start_by_longest,
            )

            # wait all the DDP process to be ready
            if num_gpus > 1:
                dist.barrier()

            # sort input sequences ascendingly by length
            dataset.preprocess_samples()

            # get samplers
            sampler = self.get_sampler(config, dataset, num_gpus)

            loader = DataLoader(
                dataset,
                batch_size=config.eval_batch_size if is_eval else config.batch_size,
                shuffle=False,  # shuffle is done in the dataset.
                drop_last=False,  # setting this False might cause issues in AMP training.
                sampler=sampler,
                collate_fn=dataset.collate_fn,
                num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
                pin_memory=True,
            )

            # get pitch mean and std
            self.pitch_mean = dataset.f0_dataset.mean
            self.pitch_std = dataset.f0_dataset.std
        return loader

    def get_criterion(self):
        return [VitsDiscriminatorLoss(self.config), DelightfulTTSLoss(self.config)]

    def get_optimizer(self) -> List:
        """Initiate and return the GAN optimizers based on the config parameters.
        It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator.
        Returns:
            List: optimizers.
        """
        optimizer_disc = get_optimizer(
            self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.disc
        )
        gen_parameters = chain(params for k, params in self.named_parameters() if not k.startswith("disc."))
        optimizer_gen = get_optimizer(
            self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, parameters=gen_parameters
        )
        return [optimizer_disc, optimizer_gen]

    def get_lr(self) -> List:
        """Set the initial learning rates for each optimizer.

        Returns:
            List: learning rates for each optimizer.
        """
        return [self.config.lr_disc, self.config.lr_gen]

    def get_scheduler(self, optimizer) -> List:
        """Set the schedulers for each optimizer.

        Args:
            optimizer (List[`torch.optim.Optimizer`]): List of optimizers.

        Returns:
            List: Schedulers, one for each optimizer.
        """
        scheduler_D = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[0])
        scheduler_G = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[1])
        return [scheduler_D, scheduler_G]

    def on_epoch_end(self, trainer):  # pylint: disable=unused-argument
        # stop updating mean and var
        # TODO: do the same for F0
        self.energy_scaler.eval()

    @staticmethod
    def init_from_config(
        config: "DelightfulTTSConfig", samples: Union[List[List], List[Dict]] = None, verbose=False
    ):  # pylint: disable=unused-argument
        """Initiate model from config

        Args:
            config (ForwardTTSE2eConfig): Model config.
            samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training.
                Defaults to None.
        """

        tokenizer, new_config = TTSTokenizer.init_from_config(config)
        speaker_manager = SpeakerManager.init_from_config(config.model_args, samples)
        ap = AudioProcessor.init_from_config(config=config)
        return DelightfulTTS(config=new_config, tokenizer=tokenizer, speaker_manager=speaker_manager, ap=ap)

    def load_checkpoint(self, config, checkpoint_path, eval=False):
        """Load model from a checkpoint created by the 👟"""
        # pylint: disable=unused-argument, redefined-builtin
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
        self.load_state_dict(state["model"])
        if eval:
            self.eval()
            assert not self.training

    def get_state_dict(self):
        """Custom state dict of the model with all the necessary components for inference."""
        save_state = {"config": self.config.to_dict(), "args": self.args.to_dict(), "model": self.state_dict}

        if hasattr(self, "emb_g"):
            save_state["speaker_ids"] = self.speaker_manager.speaker_names

        if self.args.use_d_vector_file:
            # TODO: implement saving of d_vectors
            ...
        return save_state

    def save(self, config, checkpoint_path):
        """Save model to a file."""
        save_state = self.get_state_dict(config, checkpoint_path)  # pylint: disable=too-many-function-args
        save_state["pitch_mean"] = self.pitch_mean
        save_state["pitch_std"] = self.pitch_std
        torch.save(save_state, checkpoint_path)

    def on_train_step_start(self, trainer) -> None:
        """Enable the discriminator training based on `steps_to_start_discriminator`

        Args:
            trainer (Trainer): Trainer object.
        """
        self.binary_loss_weight = min(trainer.epochs_done / self.config.binary_loss_warmup_epochs, 1.0) * 1.0
        self.train_disc = (  # pylint: disable=attribute-defined-outside-init
            trainer.total_steps_done >= self.config.steps_to_start_discriminator
        )


class DelightfulTTSLoss(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.mse_loss = nn.MSELoss()
        self.mae_loss = nn.L1Loss()
        self.forward_sum_loss = ForwardSumLoss()
        self.multi_scale_stft_loss = MultiScaleSTFTLoss(**config.multi_scale_stft_loss_params)

        self.mel_loss_alpha = config.mel_loss_alpha
        self.aligner_loss_alpha = config.aligner_loss_alpha
        self.pitch_loss_alpha = config.pitch_loss_alpha
        self.energy_loss_alpha = config.energy_loss_alpha
        self.u_prosody_loss_alpha = config.u_prosody_loss_alpha
        self.p_prosody_loss_alpha = config.p_prosody_loss_alpha
        self.dur_loss_alpha = config.dur_loss_alpha
        self.char_dur_loss_alpha = config.char_dur_loss_alpha
        self.binary_alignment_loss_alpha = config.binary_align_loss_alpha

        self.vocoder_mel_loss_alpha = config.vocoder_mel_loss_alpha
        self.feat_loss_alpha = config.feat_loss_alpha
        self.gen_loss_alpha = config.gen_loss_alpha
        self.multi_scale_stft_loss_alpha = config.multi_scale_stft_loss_alpha

    @staticmethod
    def _binary_alignment_loss(alignment_hard, alignment_soft):
        """Binary loss that forces soft alignments to match the hard alignments as
        explained in `https://arxiv.org/pdf/2108.10447.pdf`.
        """
        log_sum = torch.log(torch.clamp(alignment_soft[alignment_hard == 1], min=1e-12)).sum()
        return -log_sum / alignment_hard.sum()

    @staticmethod
    def feature_loss(feats_real, feats_generated):
        loss = 0
        for dr, dg in zip(feats_real, feats_generated):
            for rl, gl in zip(dr, dg):
                rl = rl.float().detach()
                gl = gl.float()
                loss += torch.mean(torch.abs(rl - gl))
        return loss * 2

    @staticmethod
    def generator_loss(scores_fake):
        loss = 0
        gen_losses = []
        for dg in scores_fake:
            dg = dg.float()
            l = torch.mean((1 - dg) ** 2)
            gen_losses.append(l)
            loss += l

        return loss, gen_losses

    def forward(
        self,
        mel_output,
        mel_target,
        mel_lens,
        dur_output,
        dur_target,
        pitch_output,
        pitch_target,
        energy_output,
        energy_target,
        src_lens,
        waveform,
        waveform_hat,
        p_prosody_ref,
        p_prosody_pred,
        u_prosody_ref,
        u_prosody_pred,
        aligner_logprob,
        aligner_hard,
        aligner_soft,
        binary_loss_weight=None,
        feats_fake=None,
        feats_real=None,
        scores_fake=None,
        spec_slice=None,
        spec_slice_hat=None,
        skip_disc=False,
    ):
        """
        Shapes:
            - mel_output: :math:`(B, C_mel, T_mel)`
            - mel_target: :math:`(B, C_mel, T_mel)`
            - mel_lens: :math:`(B)`
            - dur_output: :math:`(B, T_src)`
            - dur_target: :math:`(B, T_src)`
            - pitch_output: :math:`(B, 1, T_src)`
            - pitch_target: :math:`(B, 1, T_src)`
            - energy_output: :math:`(B, 1, T_src)`
            - energy_target: :math:`(B, 1, T_src)`
            - src_lens: :math:`(B)`
            - waveform: :math:`(B, 1, T_wav)`
            - waveform_hat: :math:`(B, 1, T_wav)`
            - p_prosody_ref: :math:`(B, T_src, 4)`
            - p_prosody_pred: :math:`(B, T_src, 4)`
            - u_prosody_ref: :math:`(B, 1, 256)
            - u_prosody_pred: :math:`(B, 1, 256)
            - aligner_logprob: :math:`(B, 1, T_mel, T_src)`
            - aligner_hard: :math:`(B, T_mel, T_src)`
            - aligner_soft: :math:`(B, T_mel, T_src)`
            - spec_slice: :math:`(B, C_mel, T_mel)`
            - spec_slice_hat: :math:`(B, C_mel, T_mel)`
        """
        loss_dict = {}
        src_mask = sequence_mask(src_lens).to(mel_output.device)  # (B, T_src)
        mel_mask = sequence_mask(mel_lens).to(mel_output.device)  # (B, T_mel)

        dur_target.requires_grad = False
        mel_target.requires_grad = False
        pitch_target.requires_grad = False

        masked_mel_predictions = mel_output.masked_select(mel_mask[:, None])
        mel_targets = mel_target.masked_select(mel_mask[:, None])
        mel_loss = self.mae_loss(masked_mel_predictions, mel_targets)

        p_prosody_ref = p_prosody_ref.detach()
        p_prosody_loss = 0.5 * self.mae_loss(
            p_prosody_ref.masked_select(src_mask.unsqueeze(-1)),
            p_prosody_pred.masked_select(src_mask.unsqueeze(-1)),
        )

        u_prosody_ref = u_prosody_ref.detach()
        u_prosody_loss = 0.5 * self.mae_loss(u_prosody_ref, u_prosody_pred)

        duration_loss = self.mse_loss(dur_output, dur_target)

        pitch_output = pitch_output.masked_select(src_mask[:, None])
        pitch_target = pitch_target.masked_select(src_mask[:, None])
        pitch_loss = self.mse_loss(pitch_output, pitch_target)

        energy_output = energy_output.masked_select(src_mask[:, None])
        energy_target = energy_target.masked_select(src_mask[:, None])
        energy_loss = self.mse_loss(energy_output, energy_target)

        forward_sum_loss = self.forward_sum_loss(aligner_logprob, src_lens, mel_lens)

        total_loss = (
            (mel_loss * self.mel_loss_alpha)
            + (duration_loss * self.dur_loss_alpha)
            + (u_prosody_loss * self.u_prosody_loss_alpha)
            + (p_prosody_loss * self.p_prosody_loss_alpha)
            + (pitch_loss * self.pitch_loss_alpha)
            + (energy_loss * self.energy_loss_alpha)
            + (forward_sum_loss * self.aligner_loss_alpha)
        )

        if self.binary_alignment_loss_alpha > 0 and aligner_hard is not None:
            binary_alignment_loss = self._binary_alignment_loss(aligner_hard, aligner_soft)
            total_loss = total_loss + self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight
            if binary_loss_weight:
                loss_dict["loss_binary_alignment"] = (
                    self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight
                )
            else:
                loss_dict["loss_binary_alignment"] = self.binary_alignment_loss_alpha * binary_alignment_loss

        loss_dict["loss_aligner"] = self.aligner_loss_alpha * forward_sum_loss
        loss_dict["loss_mel"] = self.mel_loss_alpha * mel_loss
        loss_dict["loss_duration"] = self.dur_loss_alpha * duration_loss
        loss_dict["loss_u_prosody"] = self.u_prosody_loss_alpha * u_prosody_loss
        loss_dict["loss_p_prosody"] = self.p_prosody_loss_alpha * p_prosody_loss
        loss_dict["loss_pitch"] = self.pitch_loss_alpha * pitch_loss
        loss_dict["loss_energy"] = self.energy_loss_alpha * energy_loss
        loss_dict["loss"] = total_loss

        # vocoder losses
        if not skip_disc:
            loss_feat = self.feature_loss(feats_real=feats_real, feats_generated=feats_fake) * self.feat_loss_alpha
            loss_gen = self.generator_loss(scores_fake=scores_fake)[0] * self.gen_loss_alpha
            loss_dict["vocoder_loss_feat"] = loss_feat
            loss_dict["vocoder_loss_gen"] = loss_gen
            loss_dict["loss"] = loss_dict["loss"] + loss_feat + loss_gen

        loss_mel = torch.nn.functional.l1_loss(spec_slice, spec_slice_hat) * self.vocoder_mel_loss_alpha
        loss_stft_mg, loss_stft_sc = self.multi_scale_stft_loss(y_hat=waveform_hat, y=waveform)
        loss_stft_mg = loss_stft_mg * self.multi_scale_stft_loss_alpha
        loss_stft_sc = loss_stft_sc * self.multi_scale_stft_loss_alpha

        loss_dict["vocoder_loss_mel"] = loss_mel
        loss_dict["vocoder_loss_stft_mg"] = loss_stft_mg
        loss_dict["vocoder_loss_stft_sc"] = loss_stft_sc

        loss_dict["loss"] = loss_dict["loss"] + loss_mel + loss_stft_sc + loss_stft_mg
        return loss_dict